zoukankan      html  css  js  c++  java
  • 【TensorFlow入门完全指南】神经网络篇·卷积神经网络

    加载数据集。

    这里的keep_prob是dropout的一个参数。dropout是一种随机置零的策略,用来防止模型过拟合。

    这里定义两层,上面是卷积层,下面是池化层。

    搭建了一层卷积、一层池化、一层卷积、一层池化。之后将输出展平,输入到全连接层里,进行输出,激活函数选用了relu函数。

    这是上面神经网络用到的参数。

    之后我们构建模型,pred是整个网络的输出。

    cost设置为交叉熵

    [l(varphi)=ylog(1-varphi)+(1-y)log(1-varphi)]

    优化器设置为AdamOptimizer,这也是一种新的优化,不展开了。

    之后我们做一个评估标准,用correct_pred表示。tf.argmax()返回每一列的最大值,这里只返回第一列的最大值(即预测结果)与标签进行匹配,之后计算一个精确度。

    最后初始变量。

    最后一段:使用了while循环,进行了训练。最核心的函数还是之前的sess.run(),我们都知道feed_dict的作用是给使用placeholder创建出来的tensor赋值。其实,他的作用更加广泛:feed 使用一个 值临时替换一个 op 的输出结果。你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失.

  • 相关阅读:
    Markdown的简介(转)
    写在二月的尾巴上
    The Pragmatic Programmer 读书笔记
    C/C++语言的一些精简归纳
    一般常用设计模式及原则的思想小结
    常用UML模型简要小结
    LeetCode 101. Symmetric Tree
    LeetCode 100. Same Tree
    LeetCode 99. Recover Binary Search Tree
    线索二叉树的建立与遍历
  • 原文地址:https://www.cnblogs.com/ldzhangyx/p/7247603.html
Copyright © 2011-2022 走看看