zoukankan      html  css  js  c++  java
  • oracle分析函数

    以下代码均经过测试,可直接运行
    Oracle分析函数、多维函数和Model函数简要说明,主要针对BI报表统计,不一定很全面,但对BI应用场景做了少许说明

    --创建一张销售数量表,数据趋势是递增的
    CREATE TABLE ComputerSales AS  
    SELECT
     120+TRUNC(rn/12)+ROUND(DBMS_RANDOM.VALUE(1,10)) SalesNumber
      FROM
      (
        SELECT level,ROWNUM rn
          FROM DUAL
       CONNECT BY ROWNUM<=120
      );

    --下面用于比较NULL值和非NULL值的统计,可以看出NULL值情况下的COUNT是存在问题的,所以建议数据库系统中最好不要使用NULL值列
    SELECT
      COUNT(*),
      COUNT(a.SalesNumber),
      COUNT(DISTINCT a.SalesNumber),
      SUM(a.SalesNumber),
      AVG(a.SalesNumber),
      MAX(a.SalesNumber),
      MIN(a.SalesNumber)
      FROM ComputerSales A;
    DELETE FROM ComputerSales WHERE SalesNumber IS NULL;
    COMMIT;
    INSERT INTO ComputerSales VALUES(NULL);
    COMMIT;
    INSERT INTO ComputerSales VALUES(NULL);
    COMMIT;
    SELECT
      COUNT(*),
      COUNT(a.SalesNumber),
      COUNT(DISTINCT a.SalesNumber),
      SUM(a.SalesNumber),
      AVG(a.SalesNumber),
      MAX(a.SalesNumber),
      MIN(a.SalesNumber)
      FROM ComputerSales A;
    SELECT trunc(dbms_random.value(1,101)), 


    DELETE FROM ComputerSales WHERE SalesNumber IS NULL;
    COMMIT;
    --创建增加了日期字段的表
    CREATE TABLE ComputerSalesBAK AS  
    SELECT SalesNumber,TRUNC(SYSDATE)+MOD(A.DateSEQ-1,10) SalesDate
      FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
    DROP TABLE ComputerSales;
    RENAME ComputerSalesBAK TO ComputerSales;

    --下面是两种创建方式,构招Area列和日期列
    CREATE TABLE ComputerSalesBAK AS  
    SELECT SalesNumber,TRUNC(SYSDATE)+MOD(A.DateSEQ-1,24) SalesDate,
           CASE WHEN TRUNC((DateSEQ-1)/24)=1 THEN '华南地区'
                WHEN TRUNC((DateSEQ-1)/24)=2 THEN '华北地区'
                WHEN TRUNC((DateSEQ-1)/24)=3 THEN '东北地区'
                WHEN TRUNC((DateSEQ-1)/24)=4 THEN '华东地区'
                ELSE '其他地区'
           END
      FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
    DROP TABLE ComputerSales;
    RENAME ComputerSalesBAK TO ComputerSales;

    --该例可构造SalesDate和Area的重复数据
    CREATE TABLE ComputerSalesBAK AS
    SELECT SalesNumber,
           TRUNC(SYSDATE)+MOD(A.DateSEQ-1,10) SalesDate,
           CASE WHEN AreaSEQ=1 THEN '华南地区'
                WHEN AreaSEQ=2 THEN '华北地区'
                WHEN AreaSEQ=3 THEN '东北地区'
                WHEN AreaSEQ=4 THEN '华东地区'
                ELSE '其他地区'
           END
      FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ,ROUND(dbms_random.VALUE(1,5)) AreaSEQ FROM ComputerSales) A;
    DROP TABLE ComputerSales;
    RENAME ComputerSalesBAK TO ComputerSales;
     

    --移动平均值,累计求和,当前窗口平均值,当前窗口求和,以及窗口函数和排序函数的作用域
    SELECT
      Area,SalesDate,SalesNumber,
      MIN(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS min_Area_SalesDate,
      MAX(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS max_Area_SalesDate,
      AVG(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS avg_Area_SalesDate,  
      SUM(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS sum_Area_SalesDate,  
      COUNT(*) OVER (PARTITION BY Area ORDER BY SalesDate) AS count_Area,
      MIN(SalesNumber) OVER (PARTITION BY Area) AS min_Area,
      MAX(SalesNumber) OVER (PARTITION BY Area) AS max_Area,
      AVG(SalesNumber) OVER (PARTITION BY Area) AS avg_Area,  
      SUM(SalesNumber) OVER (PARTITION BY Area) AS sum_Area,  
      COUNT(*) OVER (PARTITION BY Area) AS count_Area 
    FROM ComputerSales

    --观察Rank、Dense_Rank,Row_number,Count的区别
    --Rank跳号,Dense_Rank不跳号,Row_number唯一,Count按统计数计也跳号
    --如果PARTITION BY和order by 的字段是唯一的话,则这四个函数没什么区别
    SELECT
      Area,SalesDate,SalesNumber,
      RANK() OVER (PARTITION BY Area order by SalesNumber) AS Rank_Area_SalesNumber,
      DENSE_RANK() OVER (PARTITION BY Area order by SalesNumber) AS DenseRank_Area_SalesNumber,
      ROW_NUMBER() OVER (PARTITION BY Area order by SalesNumber) AS Rownumber_Area_SalesNumber,
      COUNT(*) OVER (PARTITION BY Area order by SalesNumber) AS CountAll_Area_SalesNumber,
      COUNT(SalesNumber) OVER (PARTITION BY Area order by SalesNumber) AS Count_Area_SalesNumber
    FROM ComputerSales

    --观察Lag和Lead的异同,以及Lag参数之间的异同
    --缺省情况下Lag取前一行的值,Lead取后一行的值
    --Lag、lead的第一个参数决定了取行的位置,第二个参数为取不到值时的缺省值
    SELECT
      Area,SalesDate,SalesNumber,
      LAG(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS Lag_Area_SalesNumber, 
      LEAD(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS Lead_Area_SalesNumber,   
      LAG(SalesNumber,1) OVER (PARTITION BY Area order by SalesDate) AS Lag1_Area_SalesNumber,
      LAG(SalesNumber,2) OVER (PARTITION BY Area order by SalesDate) AS Lag2_Area_SalesNumber,
      LEAD(SalesNumber,1) OVER (PARTITION BY Area order by SalesDate) AS Lead1_Area_SalesNumber,
      LEAD(SalesNumber,2) OVER (PARTITION BY Area order by SalesDate) AS Lead2_Area_SalesNumber,
      LAG(SalesNumber,1,0) OVER (PARTITION BY Area order by SalesDate) AS Lag10_Area_SalesNumber,
      LAG(SalesNumber,2,1) OVER (PARTITION BY Area order by SalesDate) AS Lag21_Area_SalesNumber,
      LEAD(SalesNumber,1,0) OVER (PARTITION BY Area order by SalesDate) AS Lead10_Area_SalesNumber,
      LEAD(SalesNumber,2,1) OVER (PARTITION BY Area order by SalesDate) AS Lead21_Area_SalesNumber 
    FROM ComputerSales

    --观察First_Value和Last_Value的不同
    --如果取同一个同组中最大值最小值对应的某列,使用FIRST_VALUE,按照升降序排列即可
    --LAST_VALUE有些像两次分组所求的最后一行
    SELECT
      Area,SalesDate,SalesNumber,
      FIRST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber) AS FirstValue_Area, 
      FIRST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber DESC) AS FirstValue_Area_Desc,   
      LAST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber) AS LastValue_Area,
      LAST_VALUE(SalesDate) OVER (PARTITION BY Area order by SalesNumber DESC) AS LastValue_Area_Desc
    FROM ComputerSales

    --与上面不同的是,KEEP需要和DENSE_RANK FIRST |DENSE_RANK LAST配合使用,且取的是相同Area中按SalesNumber排序所获得最大或最小的值,而上面只是取第一行或最后一行
    SELECT Area,SalesDate,SalesNumber,
      DENSE_RANK() OVER(PARTITION BY Area ORDER BY SalesNumber) DENSE_RANK,
      MIN(SalesDate) KEEP (DENSE_RANK FIRST ORDER BY SalesNumber) OVER(PARTITION BY Area) min_first,
      MIN(SalesDate) KEEP (DENSE_RANK LAST ORDER BY SalesNumber) OVER(PARTITION BY Area) min_last,
      MAX(SalesDate) KEEP (DENSE_RANK FIRST ORDER BY SalesNumber) OVER(PARTITION BY Area) max_first,
      MAX(SalesDate) KEEP (DENSE_RANK LAST ORDER BY SalesNumber) OVER(PARTITION BY Area) max_last
    FROM ComputerSales

    --CUME_DIST和PERCENT_RANK差不多,都是累计计算比例,只不过计算基准不同,CUME_DIST更符合一般的做法
    --NTILE把数据平分为若干份,更适合用来计算四分位上的值
    --RATIO_TO_REPORT,则是求当前值在分区中的比例,且不能与ORDER BY 合起来使用
    --PERCENTILE_DISC和PERCENTILE_CONT,则是给定的比例参数所对应的值,一般使用PERCENTILE_DISC即可
    SELECT Area,SalesDate,SalesNumber,
      ROUND(CUME_DIST() OVER(PARTITION BY Area ORDER BY SalesNumber),2) cume_dist,
      ROUND(PERCENT_RANK() OVER(PARTITION BY Area ORDER BY SalesNumber),2) PERCENT_RANK,
      ROUND(RATIO_TO_REPORT(SalesNumber) OVER(PARTITION BY Area),2) RATIO_TO_REPORT,
      NTILE(4) OVER(PARTITION BY Area ORDER BY SalesNumber) NTILE,
      PERCENTILE_DISC(0.7) WITHIN GROUP (ORDER BY SalesNumber) OVER(PARTITION BY Area) PERCENTILE_DISC,
      PERCENTILE_CONT(0.7) WITHIN GROUP (ORDER BY SalesNumber) OVER(PARTITION BY Area) PERCENTILE_CONT
    FROM ComputerSales

    --增加了一列叫销售额,可以进行相关数理统计
    CREATE TABLE ComputerSalesBAK AS  
    SELECT SalesNumber,
           ROUND(SalesNumber*10+5*DBMS_RANDOM.VALUE(1,10)) SalesValue,
           TRUNC(SYSDATE)+MOD(A.DateSEQ-1,24) SalesDate,
           CASE WHEN TRUNC((DateSEQ-1)/24)=1 THEN '华南地区'
                WHEN TRUNC((DateSEQ-1)/24)=2 THEN '华北地区'
                WHEN TRUNC((DateSEQ-1)/24)=3 THEN '东北地区'
                WHEN TRUNC((DateSEQ-1)/24)=4 THEN '华东地区'
                ELSE '其他地区'
           END Area
      FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
    DROP TABLE ComputerSales;
    RENAME ComputerSalesBAK TO ComputerSales;
    SELECT * FROM ComputerSales;

    --其他统计,对数理分析有研究的同学可以尝试一下其经济学含义
    SELECT Area,SalesDate,SalesValue,SalesNumber,
      REGR_SLOPE(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "斜率",
      REGR_INTERCEPT(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "截距",
      REGR_R2(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "回归线决定系数",
      REGR_AVGX(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "回归线自变量平均值",
      REGR_AVGY(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "回归线应变量平均值", 
      VAR_POP(SalesValue) OVER(PARTITION BY Area ORDER BY SalesDate) "VAR_POP_应变量", 
      VAR_POP(SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "VAR_POP_自变量", 
      COVAR_POP(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "COVAR_POP",       
      REGR_SXX(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_SXX",  --REGR_COUNT(expr1, expr2) * VAR_POP(expr2) 
      REGR_SYY(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_SXY",  --REGR_COUNT(expr1, expr2) * VAR_POP(expr1)
      REGR_SXY(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_SXY",  --REGR_COUNT(expr1, expr2) * COVAR_POP(expr1, expr2)  
      REGR_COUNT(SalesValue,SalesNumber) OVER(PARTITION BY Area ORDER BY SalesDate) "REGR_COUNT"
    FROM ComputerSales

    --关于按日期进行环比的问题
    --同比则有麻烦,因为日期天数是不固定的
    --从ComputerSales随机删除几行再测
    SELECT AREA,SALESDATE,SALESNUMBER,
      LAG(SalesNumber) OVER (PARTITION BY Area order by SalesDate) AS Lag_error,  --如遇断号,会导致数据不准
      SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 1 PRECEDING AND 1 PRECEDING) yesterday, --昨天的值 
      SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 6 PRECEDING AND 6 PRECEDING) lastweek, --上周数据 
      SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 6 PRECEDING AND 0 PRECEDING) last7_accu, --前7天累计,包括当天
      SUM(SalesNumber) OVER (PARTITION BY AREA ORDER BY SALESDATE RANGE BETWEEN 29 PRECEDING AND 0 PRECEDING) last30_accu--前30天累计,包括当天
      FROM ComputerSales
     
    --再度增加一个product产品列,以方便进行CUBE函数演示
    CREATE TABLE ComputerSalesBAK AS  
    SELECT SalesNumber,
           ROUND(SalesNumber*10+5*DBMS_RANDOM.VALUE(1,10)) SalesValue,
           TRUNC(SYSDATE)+MOD(A.DateSEQ-1,24) SalesDate,
           CASE WHEN TRUNC((DateSEQ-1)/24)=1 THEN '华南地区'
                WHEN TRUNC((DateSEQ-1)/24)=2 THEN '华北地区'
                WHEN TRUNC((DateSEQ-1)/24)=3 THEN '东北地区'
                WHEN TRUNC((DateSEQ-1)/24)=4 THEN '华东地区'
                ELSE '其他地区'
           END Area,
           CASE WHEN ROUND(DBMS_RANDOM.VALUE(1,3))=1 THEN '产品A'
                WHEN ROUND(DBMS_RANDOM.VALUE(1,3))=2 THEN '产品B'
                ELSE '产品C'
           END Product      
      FROM (SELECT SalesNumber,ROW_NUMBER() OVER(ORDER BY ROWID) DateSEQ FROM ComputerSales) A;
    DROP TABLE ComputerSales;
    RENAME ComputerSalesBAK TO ComputerSales;
    SELECT * FROM ComputerSales;

    --传统的group by语法
    SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
      FROM ComputerSales
     GROUP BY Product,Area,SalesDate
     ORDER BY Product,Area,SalesDate
     
    --ROLLUP (group的字段顺序)
    --会自动按Group字段分层统计,与日常报表较为相似
    SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
      FROM ComputerSales
     GROUP BY ROLLUP(Product,Area,SalesDate)
     ORDER BY Product,Area,SalesDate --加不加均可,已经自动按分组字段排序
     
    --等价于
    SELECT * FROM
    (
    SELECT Product,Area,SalesDate,SUM(SalesNumber) SalesNumber,SUM(SalesValue) SalesValue --最大级分组
      FROM ComputerSales
     GROUP BY Product,Area,SalesDate
     UNION ALL
    SELECT Product,Area,NULL,SUM(SalesNumber),SUM(SalesValue) --按产品、地区分组
      FROM ComputerSales
     GROUP BY Product,Area,NULL
     UNION ALL
    SELECT Product,NULL,NULL,SUM(SalesNumber),SUM(SalesValue) --按产品分组
      FROM ComputerSales
     GROUP BY Product,NULL,NULL
     UNION ALL 
    SELECT NULL,NULL,NULL,SUM(SalesNumber),SUM(SalesValue)   --统计总和
      FROM ComputerSales
     GROUP BY NULL,NULL,NULL
    ) ORDER BY 1,2,3                                         --最后再排序
     
     
    --CUBE (group的字段顺序),与OLAP比较相似,求得所有维度的交汇点
    --会自动按Group字段排列组合进行统计
    SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
      FROM ComputerSales
     GROUP BY CUBE(Product,Area,SalesDate)
     ORDER BY Product,Area,SalesDate --加不加均可,已经自动按分组字段排序
    --两则的区别
    --即ROLLUP 为C(3,1)即多了3层
    --按照Product,Area,SalesDate;Product,Area;Product;ALL的顺序进行了统计
    --CUBE的统计层级则为2的N次方,即全部的有序组合
    --按照Product,Area,SalesDate;Product,Area;Product,SalesDate;Product;Area,SalesDate;Area;SalesDate;ALL的顺序进行了统计
    --与ROLLUP的等价表达式,相当于ROLLUP的排列组合
    SELECT * FROM
    (
    SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue) --先按Product,Area,SalesDate求ROLLUP
      FROM ComputerSales
     GROUP BY ROLLUP(Product,Area,SalesDate)
    UNION
    SELECT Product,NULL,SalesDate,SUM(SalesNumber),SUM(SalesValue) --再按Product,SalesDate求ROLLUP
      FROM ComputerSales
     GROUP BY ROLLUP(Product,NULL,SalesDate)
    UNION
    SELECT NULL,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue) --再按Area,SalesDate求ROLLUP
      FROM ComputerSales
     GROUP BY ROLLUP(NULL,Area,SalesDate)
    UNION
    SELECT NULL,NULL,SalesDate,SUM(SalesNumber),SUM(SalesValue) --最后按SalesDate求ROLLUP
      FROM ComputerSales
     GROUP BY ROLLUP(NULL,NULL,SalesDate)
     )
     ORDER BY 1,2,3

    --GROUPING SETS等同于按三列单独求统计,一般不常用
    SELECT Product,Area,SalesDate,SUM(SalesNumber),SUM(SalesValue)
      FROM ComputerSales
     GROUP BY GROUPING SETS(Product,Area,SalesDate)
     ORDER BY Product,Area,SalesDate ;--加不加均可,已经自动按分组字段排序
    --等价于
    SELECT * FROM
    (
    SELECT Product,NULL Area,NULL SalesDate,SUM(SalesNumber),SUM(SalesValue) --按产品分组
      FROM ComputerSales
     GROUP BY Product,NULL,NULL
     UNION ALL
    SELECT NULL,Area,NULL,SUM(SalesNumber),SUM(SalesValue) --按地区分组
      FROM ComputerSales
     GROUP BY NULL,Area,NULL
     UNION ALL
    SELECT NULL,NULL,SalesDate,SUM(SalesNumber) SalesNumber,SUM(SalesValue) SalesValue --按日期分组
      FROM ComputerSales
     GROUP BY NULL,NULL,SalesDate
    ) ORDER BY 1,2,3    

    --GROUPING函数只接受一个参数,参数为数据表的一列。如果该列为空返回1,否则返回0。
    --并且它仅能与 GROUP BY,ROLLUP,CUBE,GROUPING SETS 一起使用。
    --稍微运行一下,就发现该函数只是为了做BI报表使用的,把统计行变为1,将来用作字符串替代
    SELECT GROUPING(Product), Product,GROUPING(Area),Area,GROUPING(SalesDate),SalesDate,SUM(SalesNumber),SUM(SalesValue)
      FROM ComputerSales
     GROUP BY ROLLUP(Product,Area,SalesDate)
     ORDER BY Product,Area,SalesDate ;
    --BI标准报表格式
    SELECT
      DECODE(ProductFlag,1,'产品汇总',Product),
      DECODE(AreaFlag,1,'地区汇总',Area),
      DECODE(SalesDateFlag,1,'日期汇总',TO_CHAR(SalesDate,'YYYY-MM-DD')),
      SalesNumber,SalesValue
      FROM
    (
    SELECT
      GROUPING(Product) ProductFlag, Product,
      GROUPING(Area) AreaFlag,Area,
      GROUPING(SalesDate) SalesDateFlag,SalesDate,
      SUM(SalesNumber) SalesNumber,SUM(SalesValue) SalesValue
      FROM ComputerSales
     GROUP BY ROLLUP(Product,Area,SalesDate)
     ORDER BY Product,Area,SalesDate
    )

    --GROUPING_ID其实和GROUPING原理差不多,GROUPING参数为单值,且只返回1,1
    --GROUPING_ID,则返回按2的指数进行累计得到空值区域的值
    SELECT Product,Area,SalesDate,
           GROUPING_ID(Product,Area,SalesDate) GROUPING421,
           GROUPING_ID(Product,Area) GROUPPING21,
           GROUPING_ID(Product) GROUPING1,
           SUM(SalesNumber),
           SUM(SalesValue)
      FROM ComputerSales
     GROUP BY ROLLUP(Product,Area,SalesDate)
     ORDER BY Product,Area,SalesDate ;--加不加均可,已经自动按分组字段排序
     
    --GROUP_ID函数可以区分重复分组结果,第1 次出现为0,以后每次出现增1。
    --GROUP_ID单独答应在SELECT 中出现意义不大,常在HAVING 中使用达到过滤重复统计的目的。
    SELECT Product,Area,SalesDate,GROUP_ID(),
           SUM(SalesNumber),SUM(SalesValue)
      FROM ComputerSales
     GROUP BY CUBE(Product,Area),CUBE(Product,SalesDate)
    HAVING GROUP_ID()=0
     ORDER BY 1,2,3
    --例如该例子中分别按Product,Area和Product,SalesDate会导致产品地区、产品时间的重复计算,导致报表的不清晰
    --我们用HAVING GROUP_ID()=0把重复计算的行去掉就OK了
    --一般情况下不建议报表程序过度分组,否则到最后连自己都搞糊涂了
    --GROUP BY,ROLLUP,CUBE能组合使用,但SELECT中的分组字段必须出现在GROUP BY的相关栏位

    --MODEL:MODEL语句的关键字,必须。
    --DIMENSION BY:DIMENSION维度的意思,可以理解为数组的索引,必须。
    --MEASURES:指定作为数组的列
    --RULES:对数组进行各种操作的描述。
    --暂时还没搞明白如何应用,只是简单实现了一个求上月、前30天、前7天,前1天的例子
    SELECT AREA,PRODUCT,SALESDATE,SALESNUMBER,
           AVG30DAY,AVG1MONTH, --最近30天的平均值,最近一个月的平均值
           ACCU30DAY,ACCU1MONTH, --最近30天的累加值,最近一个月的累加值
           SALESNUMBER1DAY,SALESNUMBER7DAY, --昨天的销售额,一周前的销售额
           SALESNUMBER30DAY,SALESNUMBER1MONTH  --30天的销售额,上月同天的销售额
      FROM ComputerSales
     MODEL DIMENSION BY (AREA,PRODUCT,SALESDATE)
     MEASURES (SALESNUMBER,0 AVG30DAY,0 AVG1MONTH,0 ACCU30DAY,0 ACCU1MONTH,0 SALESNUMBER1DAY,0 SALESNUMBER7DAY,0 SALESNUMBER30DAY,0 SALESNUMBER1MONTH)
     RULES UPDATE
     (AVG30DAY[ANY,ANY,ANY]=AVG(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-29 AND CV(SALESDATE)],
      AVG1MONTH[ANY,ANY,ANY]=AVG(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN ADD_MONTHS(CV(SALESDATE),-1) AND CV(SALESDATE)],
      ACCU30DAY[ANY,ANY,ANY]=SUM(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-30 AND CV(SALESDATE)],
      ACCU1MONTH[ANY,ANY,ANY]=SUM(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN ADD_MONTHS(CV(SALESDATE),-1) AND CV(SALESDATE)],
      SALESNUMBER1DAY[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-1 AND CV(SALESDATE)-1],
      SALESNUMBER7DAY[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-7 AND CV(SALESDATE)-7],
      SALESNUMBER30DAY[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-30 AND CV(SALESDATE)-30],
      SALESNUMBER1MONTH[ANY,ANY,ANY]=MAX(SALESNUMBER)[CV(),CV(),SALESDATE BETWEEN CV(SALESDATE)-30 AND CV(SALESDATE)-30] 
      )
    ORDER BY 1,2,3


    关于按年月环比统计中可能出现的问题

    CREATE TABLE TEST (SALESMONTH VARCHAR(6),SALESNUMBER INT) ;
    INSERT INTO TEST VALUES('201002',2);
    INSERT INTO TEST VALUES('201004',4);
    INSERT INTO TEST VALUES('201007',7);
    INSERT INTO TEST VALUES('201008',8);
    INSERT INTO TEST VALUES('201010',10);

    SELECT SALESMONTH,SALESNUMBER,
    LAG(SalesNumber) OVER(order by SalesMONTH) AS Lag10_Area_SalesNumber,
    --如遇断号,会导致数据不准
    SUM(SalesNumber) OVER(ORDER BY TO_DATE(SalesMONTH||'01','YYYYMMDD') RANGE BETWEEN 1 PRECEDING AND 1 PRECEDING)
    FROM TEST

    遇到一个问题,假如BI报表中的月份是字符串,而碰巧断月了,如何准确求得上个月的数据,理应为空
    如果是天的话可以想办法规避掉,如果是字符串月没想好怎么处理

    newkid给了算法
    SELECT SALESMONTH,SALESNUMBER, 
      MAX(SalesNumber) OVER(order by TO_DATE(SalesMONTH,'YYYYMM') RANGE BETWEEN 31 PRECEDING AND 1 PRECEDING )
    FROM TEST;
    但我觉得结果很正确,但是不保险,而且有点迷糊
    是把当前的月份转换成当月的第一天,并且向前推31天到前1天
    假如当前月是2月,向前推31天应该到去年12月份了,求的 MAX(SalesNumber) 未必有效
    可实际结果是正确的,奇怪

    关于Model的用法,实在读不下去
    http://download.oracle.com/docs/cd/B19306_01/server.102/b14223/sqlmodel.htm

  • 相关阅读:
    JUC学习笔记--从阿里Java开发手册学习线程池的正确创建方法
    1.初识Python
    学会 Debug
    如何找出nginx配置文件的所在位置?
    一个技术人,如何做到比别人更突出
    生产环境如何快速跟踪、分析、定位问题-Java
    如何优化代码中大量的if/else,switch/case?
    UML类图几种关系的总结
    DateUtils常用方法
    如何存储和表示数字—二进制(一)
  • 原文地址:https://www.cnblogs.com/leaf9/p/2647965.html
Copyright © 2011-2022 走看看