一个多阶段库存订货问题的 +Leapms 求解要点
问题来自微信公众号“运筹分享交流”——“互助·运筹擂台3 多阶段库存订货问题”。
数学概念模型
求解结果
+Leapms>mip relexed_solution=416; number_of_nodes_branched=0; memindex=(2,2) The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... s2* =30 x1_4* =1 x2_5* =1 x4_4* =1 ......... Objective*=442 ......... +Leapms>
附:+Leapms求解过程
+Leapms>load Current directory is "ROOT". ......... wwp.leap ......... please input the filename:wwp ================================================================ 1: min sum{i=1,...,m;k=1,...,n}x[i][k]F[k]+sum{i=1,...,m}s[i]*C 2: subject to 3: s[i]=s[i-1]+sum{k=1,...,n}x[i][k]B[k]-D[i]|i=1,...,m 4: s[0]=0 5: s[4]=0 6: s[i]<=40|i=1,...,3 7: where 8: m,n are integers 9: B,F,D are sets 10: S,C are numbers 11: s[i] is a variable of nonnegative number|i=0,...,m 12: x[i][k] is a variable of nonnegative integer|i=1,...,m;k=1,...,n 13: data_relation 14: m=_$(D) 15: n=_$(B) 16: data 17: B={10,20, 30, 40, 50} 18: F={48,86,118,138,160} 19: S=40 20: C=0.2 21: D={40 20 30 40} 22: 23: ================================================================ >>end of the file. Parsing model: 1D 2R 3V 4O 5C 6S 7End. .................................. number of variables=25 number of constraints=9 .................................. +Leapms>mip relexed_solution=416; number_of_nodes_branched=0; memindex=(2,2) The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... s2* =30 x1_4* =1 x2_5* =1 x4_4* =1 ......... Objective*=442 ......... +Leapms>