zoukankan      html  css  js  c++  java
  • 一个多阶段库存订货问题的 +Leapms 求解要点

    一个多阶段库存订货问题的 +Leapms 求解要点

    问题来自微信公众号“运筹分享交流”——“互助·运筹擂台3 多阶段库存订货问题”。

    数学概念模型

    求解结果

    +Leapms>mip
    relexed_solution=416; number_of_nodes_branched=0; memindex=(2,2)
    The Problem is solved to optimal as an MIP.
    找到整数规划的最优解.非零变量值和最优目标值如下:
      .........
        s2* =30
        x1_4* =1
        x2_5* =1
        x4_4* =1
      .........
        Objective*=442
      .........
    +Leapms>

    附:+Leapms求解过程

    +Leapms>load
     Current directory is "ROOT".
     .........
            wwp.leap
     .........
    please input the filename:wwp
    ================================================================
    1:  min sum{i=1,...,m;k=1,...,n}x[i][k]F[k]+sum{i=1,...,m}s[i]*C
    2:  subject to
    3:      s[i]=s[i-1]+sum{k=1,...,n}x[i][k]B[k]-D[i]|i=1,...,m
    4:      s[0]=0
    5:      s[4]=0
    6:      s[i]<=40|i=1,...,3
    7:  where
    8:      m,n are integers
    9:      B,F,D are sets
    10:     S,C are numbers
    11:     s[i] is a variable of nonnegative number|i=0,...,m
    12:     x[i][k] is a variable of nonnegative integer|i=1,...,m;k=1,...,n
    13:  data_relation
    14:     m=_$(D)
    15:     n=_$(B)
    16:  data
    17:     B={10,20, 30, 40, 50}
    18:     F={48,86,118,138,160}
    19:     S=40
    20:     C=0.2
    21:     D={40 20 30 40}
    22:
    23:
    ================================================================
    >>end of the file.
    Parsing model:
    1D
    2R
    3V
    4O
    5C
    6S
    7End.
    ..................................
    number of variables=25
    number of constraints=9
    ..................................
    +Leapms>mip
    relexed_solution=416; number_of_nodes_branched=0; memindex=(2,2)
    The Problem is solved to optimal as an MIP.
    找到整数规划的最优解.非零变量值和最优目标值如下:
      .........
        s2* =30
        x1_4* =1
        x2_5* =1
        x4_4* =1
      .........
        Objective*=442
      .........
    +Leapms>

      

  • 相关阅读:
    Pycharm中 import 引入同级文件失败问题
    Python实现 K_Means聚类算法
    Python 的 Matplotlib 画图库
    Numpy库应用实例——GPS定位
    Python 的 Numpy 库
    Python 各种库的安装
    Python 的 pandas 实践
    方差、协方差、协方差矩阵
    Python实现梯度下降法
    Vue 不睡觉教程3
  • 原文地址:https://www.cnblogs.com/leapms/p/10192433.html
Copyright © 2011-2022 走看看