zoukankan      html  css  js  c++  java
  • 如何用整数规划求解NP完全问题

    如何用整数规划求解NP完全问题

    一、NP完全问题

    NP完全问题是一类具有非常高难度的组合最优化问题, 所有NP完全问题都是NP难问题。虽然P问题是比较容易的问题, NP问题却不一定是困难问题,必须看见NP完全或者NP难这样的字才能说这个问题求解起来很困难。

    经常听砖家说,NP完全/NP难问题不能用整数规划求解。实际情况怎样?实事证明砖家的话只能信一半:)。这里咱就看看用整数规划求解一个NP完全问题行也不行。

    这里有一个货真价实的整数规划问题——划分问题(The partition problem)。问题是:给定一个大小不等的整数集合,问是否可以把这些整数划分成两个集合,任何一个整数或者在集合S1中或者在S2中,但不能同时在两个集合中;对任意给的一个整数集合,请设计算法,解决是否存在一个划分,使得S1种整数之和恰好等于S2集合的整数之和。

    二、建立整数规划模型

    对每个整数定义一个0-1变量xi, xi=1 表示第i个整数位于集合S1中, xi=0表示第i个整数位于S2中。用s1表示第一集合的整数之和,用s2表示第二个集合里的整数之和。即:

           

    设d是s1和s2之间差的绝对值。于是:

               

    我们只要极小化d就可以了,即:

            

    完整模型:

                                    

     三、上面的模型的文本表达

     上面的模型不只是用来摆摆看的,还可以真的被求解哈。我们需要把模型写成文本格式(Leapms建模语言格式),让计算机理解。目标函数就写成

    min d

    加上其余约束部分(注意西格玛符合的写法)

    subject to
        s1=sum{i=1,...,n}x[i]S[i]
        s2=sum{i=1,...,n}((1-x[i])S[i])
        d>=s1-s2
        d>=s2-s1

    加上符号说明(符号必须说明,不然计算机不知道哪些是常数,哪些是变量)

    where
        n is an integer
        S is a set
        s1,s2,d are variables of number
        x[i] is a variable of binary|i=1,...,n

    加上数据(注意整数个数是从集合S上自己数出来的)

    data_relation
        n=_$(S)
    data
        S={11,47,159,137,85,47,142,35,119,61,88,175,13,96,-11,176,126,15,98,46,163}

    四、求解

    把如下完整模型贴到记事本上,保存为 partition.leap文件。(注意如果是partition.txt不行啊)。

    min d
    subject to
        s1=sum{i=1,...,n}x[i]S[i]
        s2=sum{i=1,...,n}((1-x[i])S[i])
        d>=s1-s2
        d>=s2-s1
    
    where
        n is an integer
        S is a set
        s1,s2,d are variables of number
        x[i] is a variable of binary|i=1,...,n
    data_relation
        n=_$(S)
    data
        S={11,47,159,137,85,47,142,35,119,61,88,175,13,96,-11,176,126,15,98,46,163}

    启动leapms,依次打入load, partion, mip命令,即可得到解

     

     

    如果需要用cplex求解,打入cplex命令即可。如果你的leapms版本不支持直接cplex调用,使用savemps命令把模型保存成mps格式而后用cplex求解(见 https://www.cnblogs.com/leapms/p/11843946.html)。

     五、结果分析

    上面的结果d=0, s1=s2=914。显然对给出的数据来说,有划分。

    整数规划成功求解了一个NP完全问题。

     

  • 相关阅读:
    HDU
    矩形嵌套(DP)
    HDU
    HDU-1003 Max Sum
    Manacher算法—最长回文串
    Codeforces Round #460 (Div. 2) A B C D
    HDU 4540 威威猫系列故事——打地鼠 (简单DP)
    UVA 129 Krypton Factor(DFS 回溯)
    Codeforces 918A Eleven 918B Radio Station
    挑战程序设计竞赛(第2版)第112页勘误
  • 原文地址:https://www.cnblogs.com/leapms/p/11845942.html
Copyright © 2011-2022 走看看