zoukankan      html  css  js  c++  java
  • The Triangle 分类: 动态规划 算法 2014-10-18 22:13 86人阅读 评论(0) 收藏

    The Triangle

    时间限制:1000 ms  |  内存限制:65535 KB
    难度:4
    描述

    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5
    (Figure 1)
    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right.

    输入
    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.
    输出
    Your program is to write to standard output. The highest sum is written as an integer.
    样例输入
    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5
    
    样例输出
    30

    #include<stdio.h>
    
    int main(){
    	int n,i,j,len,sum,tem1,tem2;
    	int a[101][101],s[101][101];
    	scanf("%d",&n);
        len=n;
    	sum=0;
    
    		for(i=1;i<=len;i++){
    			for(j=1;j<=i;j++){
    				scanf("%d",&a[i][j]);
    			}
    		}
    		s[1][1]=a[1][1];
    		for(i=2;i<=len;i++){
    			for(j=1;j<=i;j++){
    				tem1=s[i-1][j-1]+a[i][j];
    				tem2=s[i-1][j]+a[i][j];
    				if(tem1>tem2){
    					s[i][j]=tem1;
    				}
    				else{
    					s[i][j]=tem2;
    				}
    			}
    		}
    		for(i=1;i<=len;i++)
    		{
    			if(s[len][i]>sum) sum=s[len][i];
    		}
    		printf("%d",sum);
    		
    	
    	return 0;
    
    
    }


    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    [C4] 前馈神经网络(Feedforward Neural Network)
    [C3] 正则化(Regularization)
    [C2] 逻辑回归(Logistic Regression)
    [C1] 线性回归(Linear Regression)
    Python基础学习
    装饰器
    完全理解Python迭代对象、迭代器、生成器
    django自己搭建的博客
    git学习,哇瑟说实话我想要的
    类继承和多态,子类重写构造函数,多重继承学习
  • 原文地址:https://www.cnblogs.com/learnordie/p/4657001.html
Copyright © 2011-2022 走看看