zoukankan      html  css  js  c++  java
  • focal loss for multi-class classification

    转自:https://blog.csdn.net/Umi_you/article/details/80982190

    Focal loss 出自何恺明团队Focal Loss for Dense Object Detection一文,用于解决分类问题中数据类别不平衡以及判别难易程度差别的问题。文章中因用于目标检测区分前景和背景的二分类问题,公式以二分类问题为例。项目需要,解决Focal loss在多分类上的实现,用此博客以记录过程中的疑惑、细节和个人理解,Keras实现代码链接放在最后。

    框架:Keras(tensorflow后端)
    环境:ubuntu16.04 python3.5

    二分类和多分类

    从初学开始就一直难以分清二分类和多分类在loss上的区别,虽然明白二分类其实是多分类的一个特殊情况,但在看Focal loss文章中的公式的时候还是不免头晕,之前不愿处理的细节如今不得不仔细从很基础的地方开始解读。

    多分类Cross Entropy
    H(y,y)=yilogyi

    二分类Cross Entropy
    H(y,y)=i=01yilogyi=(y0logy0+y1logy1)=[y0logy0+(1y0)log(1y0)]

    可以看出二分类问题的交叉熵其实是多分类扩展后的变形,在FocalLoss文章中,作者用一个分段函数代表二分类问题的CE(CrossEntropy)以及用pt的一个分段函数来代表二分类中标签值为1的 yi部分(此处的标签值为one-hot[0 1]或[1 0]中1所在的类别):
    这里写图片描述
    这里写图片描述

    文章图中的p(predict或probility?)等价于多分类Cross Entropy公式的y,也即经激活函数(多分类为softmax函数,二分类为sigmoid函数)后得到的概率,而文章中的y对应的是Cross Entropy中的y,即label。

    CE经分段函数pt作为自变量后可以转化为CE(p,y)=CE(pt)=log(pt),实际上pt所代表的就是多分类CE中的yi(标签值)为1对应的yi的值,只不过在二分类中y0y1互斥(两者之和为1),所以可以用一个分段的变量pt来表示在i取不同值情况下的yi,我理解pt为当前样本的置信度,pt越大置信度越大,交叉熵越小。总结:多分类中每个样本的pt为one-hot中label为1的index对应预测结果pred的值,用代码表达就是max(ypredylabel,axis=1)

    了解pt所代表的是什么之后,接下来多分类的Focal Loss就好解决了。接下来举个三分类的例子来模拟一下流程大致就知道代码怎么写了:
    假设
    ypred为softmax之后得出的结果:
    这里写图片描述
    ylabel为one-hot标签:
    这里写图片描述
    pt=ypredylabel:
    这里写图片描述

    1pt :
    这里写图片描述
    log(pt):(注意pt可能为0,log(x)的取值不能为0,所以加上epsilon)
    这里写图片描述

    Fl:
    这里写图片描述
    这里写图片描述

    可以看到3.4538..的地方本该是0才对,原因是log函数后会得到一个很小的值,而不是0,所以应该先做log再乘y_label:
    这里写图片描述

    原: log(pt)=log(ylabelypred)
    改: log(pt)=ylabellog(ypred)

    顺带一提,在多分类中alpha参数是没有效果的,每个样本都乘以了同样的权重

    详细信息可以看代码中的注释

    代码:Keras版本

  • 相关阅读:
    MySQL GROUP BY多个字段分组用法详解
    Linux下自动备份MySQL数据库并上传到远程FTP服务器
    mysql服务器主从数据库同步配置(转)
    centos上安装配置java WEB环境_java(转)
    Win7和Vista的安全机制对于应用程序读取配置文件相关操作的影响(虚拟重定向技术)
    firemonkey 手机屏幕自适应程序问题
    Delphi中无边框窗体应用程序使任务栏右键菜单有效的方法
    GetClass与RegisterClass的应用一例
    Delphi中的动态包,有详细建立包的步骤(答案很简单:因为包的功能强大)
    JS开发调试
  • 原文地址:https://www.cnblogs.com/leebxo/p/10547091.html
Copyright © 2011-2022 走看看