富集分析非常常见,用于判断抽样的结果是否显著。
例子1:一个工厂总共有N件产品,其中M件次品,现在从中抽取n件做检查,抽到k件次品的概率分布服从超几何分布。
例子2:一个细胞有N个基因,其中在pathway A里面有M个基因,现在从中抽取n个基因,抽到k个pathway A里基因的概率分布服从超几何分布。
最靠谱的富集分析当属clusterProfiler,里面的enrichGO可以做富集分析。
现在我有个性化的需求,所以要自己做,想借鉴一下里面的代码。
查看enrichGO代码,发现是里面的enricher_internal在做这件事,去GitHub查,发现enricher_internal是DOSE的函数,继续去GitHub查,定位到enricher_internal。
代码一览无余:
termID2ExtID <- termID2ExtID[idx] qTermID2ExtID <- qTermID2ExtID[idx] qTermID <- unique(names(qTermID2ExtID)) ## prepare parameter for hypergeometric test k <- sapply(qTermID2ExtID, length) k <- k[qTermID] M <- sapply(termID2ExtID, length) M <- M[qTermID] N <- rep(length(extID), length(M)) ## n <- rep(length(gene), length(M)) ## those genes that have no annotation should drop. n <- rep(length(qExtID2TermID), length(M)) args.df <- data.frame(numWdrawn=k-1, ## White balls drawn numW=M, ## White balls numB=N-M, ## Black balls numDrawn=n) ## balls drawn ## calcute pvalues based on hypergeometric model pvalues <- apply(args.df, 1, function(n) phyper(n[1], n[2], n[3], n[4], lower.tail=FALSE) ) ## gene ratio and background ratio GeneRatio <- apply(data.frame(a=k, b=n), 1, function(x) paste(x[1], "/", x[2], sep="", collapse="") ) BgRatio <- apply(data.frame(a=M, b=N), 1, function(x) paste(x[1], "/", x[2], sep="", collapse="") ) Over <- data.frame(ID = as.character(qTermID), GeneRatio = GeneRatio, BgRatio = BgRatio, pvalue = pvalues, stringsAsFactors = FALSE) p.adj <- p.adjust(Over$pvalue, method=pAdjustMethod) qobj <- tryCatch(qvalue(p=Over$pvalue, lambda=0.05, pi0.method="bootstrap"), error=function(e) NULL) if (class(qobj) == "qvalue") { qvalues <- qobj$qvalues } else { qvalues <- NA } geneID <- sapply(qTermID2ExtID, function(i) paste(i, collapse="/")) geneID <- geneID[qTermID] Over <- data.frame(Over, p.adjust = p.adj, qvalue = qvalues, geneID = geneID, Count = k, stringsAsFactors = FALSE) Description <- TERM2NAME(qTermID, USER_DATA) if (length(qTermID) != length(Description)) { idx <- qTermID %in% names(Description) Over <- Over[idx,] } Over$Description <- Description nc <- ncol(Over) Over <- Over[, c(1,nc, 2:(nc-1))] Over <- Over[order(pvalues),] Over$ID <- as.character(Over$ID) Over$Description <- as.character(Over$Description) row.names(Over) <- as.character(Over$ID) x <- new("enrichResult", result = Over, pvalueCutoff = pvalueCutoff, pAdjustMethod = pAdjustMethod, qvalueCutoff = qvalueCutoff, gene = as.character(gene), universe = extID, geneSets = geneSets, organism = "UNKNOWN", keytype = "UNKNOWN", ontology = "UNKNOWN", readable = FALSE ) return (x)
核心就是这个代码了:
args.df <- data.frame(numWdrawn=k-1, ## White balls drawn numW=M, ## White balls numB=N-M, ## Black balls numDrawn=n) ## balls drawn ## calcute pvalues based on hypergeometric model pvalues <- apply(args.df, 1, function(n) phyper(n[1], n[2], n[3], n[4], lower.tail=FALSE) )
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
其中:
第一个参数:q
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.
第二个参数:m
the number of white balls in the urn.
第三个参数:n
the number of black balls in the urn.
第四个参数:k
the number of balls drawn from the urn.
ID Description GeneRatio BgRatio pvalue p.adjust qvalue
GO:0008380 RNA splicing 68/854 364/23210 6.07E-29 2.70E-25 2.28E-25
关键的只有两个数:
GeneRatio:我输入的基因数854(n),其中在pathway A里的有68个(k)
BgRatio:总共背景(有注释)基因数23210(N),其中pathway A里的基因数364个(M)
phyper(k-1, M, N-M, n, lower.tail = TRUE, log.p = FALSE)
带入数字:
phyper(67, 364, 23210-364, 854, lower.tail = TRUE, log.p = FALSE) = 6.07163831922482e-29
结果一致。
进阶:
- lower.tail是什么
- 为什么第一个参数要减1
参考: