这篇文章用来记录Kinect2.0如何生成点云.
以下示例源自Kinect提供的example修改完成,其名称会在小标题下方注解.
首先,要获取点云需要获取图像的深度数据和颜色数据.最后再将深度数据与颜色数据转为点云.
1.获取图像深度数据:
基于Depth Basic -D2D Example修改
HRESULT CMotionRecognition::GetDepthImage(){ if (!m_pDepthFrameReader) { return E_FAIL; } IDepthFrame * pDepthFrame = nullptr; HRESULT hr = m_pDepthFrameReader->AcquireLatestFrame(&pDepthFrame); if (SUCCEEDED(hr)){ IFrameDescription * pFrameDescription = nullptr; USHORT nDepthMinReliableDistance = 0; USHORT nDepthMaxDistance = 0; UINT16 *pBuffer = NULL; UINT nBufferSize = 0; if (SUCCEEDED(hr)) { hr = pDepthFrame->get_FrameDescription(&pFrameDescription); } if (SUCCEEDED(hr)) { hr = pFrameDescription->get_Width(&nDepthWidth); } if (SUCCEEDED(hr)) { hr = pFrameDescription->get_Height(&nDepthHeight); } if (SUCCEEDED(hr)) { hr = pDepthFrame->get_DepthMinReliableDistance(&nDepthMinReliableDistance); } if (SUCCEEDED(hr)) { // In order to see the full range of depth (including the less reliable far field depth) // we are setting nDepthMaxDistance to the extreme potential depth threshold nDepthMaxDistance = USHRT_MAX; // Note: If you wish to filter by reliable depth distance, uncomment the following line. //// hr = pDepthFrame->get_DepthMaxReliableDistance(&nDepthMaxDistance); } if (SUCCEEDED(hr)) { hr = pDepthFrame->AccessUnderlyingBuffer(&nBufferSize, &pBuffer); } if (SUCCEEDED(hr)) { ConvertMat_depth(pBuffer, nDepthMinReliableDistance, nDepthMaxDistance); } SafeRelease(pFrameDescription); } SafeRelease(pDepthFrame); return hr; }
2.获取图像颜色数据:
基于Color Basic-D2D Example修改
HRESULT CMotionRecognition::GetColorImage(){ if (!m_pColorFrameReader) { return E_FAIL; } IColorFrame* pColorFrame = NULL; HRESULT hr = m_pColorFrameReader->AcquireLatestFrame(&pColorFrame); if (SUCCEEDED(hr)) { INT64 nTime = 0; IFrameDescription* pFrameDescription = NULL; ColorImageFormat imageFormat = ColorImageFormat_None; UINT nBufferSize = 0; RGBQUAD *pBuffer = NULL; hr = pColorFrame->get_RelativeTime(&nTime); if (SUCCEEDED(hr)) { hr = pColorFrame->get_FrameDescription(&pFrameDescription); } if (SUCCEEDED(hr)) { hr = pFrameDescription->get_Width(&nColorWidth); } if (SUCCEEDED(hr)) { hr = pFrameDescription->get_Height(&nColorHeight); } if (SUCCEEDED(hr)) { hr = pColorFrame->get_RawColorImageFormat(&imageFormat); } if (SUCCEEDED(hr)) { if (imageFormat == ColorImageFormat_Bgra) { hr = pColorFrame->AccessRawUnderlyingBuffer(&nBufferSize, reinterpret_cast<BYTE**>(&pBuffer)); } else if (m_pColorRGBX) { pBuffer = m_pColorRGBX; nBufferSize = nColorWidth * nColorHeight * sizeof(RGBQUAD); hr = pColorFrame->CopyConvertedFrameDataToArray(nBufferSize, reinterpret_cast<BYTE*>(pBuffer), ColorImageFormat_Bgra); } else { hr = E_FAIL; } } if (SUCCEEDED(hr)) { ConvertMat_color(pBuffer, nColorWidth, nColorHeight); } SafeRelease(pFrameDescription); } SafeRelease(pColorFrame); return hr; }
3.处理图像数据函数
1/2中有一个ConvertMat_*函数,他是负责处理获取的图像颜色数据的,因为点云的转换需要深度数据和图像颜色数据,注意在这还可以创建OpenCV的Mat.
但这里只给出将获取的数据转存到pDepthBuffer(类中的一个成员)中的案例.
ConvertMat_depth()
void CMotionRecognition::ConvertMat_depth(const UINT16* _pBuffer, USHORT nMinDepth, USHORT nMaxDepth) { const UINT16 * pBuffer = _pBuffer, * pBufferEnd = _pBuffer + (nDepthWidth * nDepthHeight); UINT16 * pDepthBufferTmp = pDepthBuffer; while (pBuffer < pBufferEnd) { *pDepthBufferTmp = *pBuffer; ++pDepthBufferTmp; ++pBuffer; } }
ConvertMat_color()
void CMotionRecognition::ConvertMat_color(const RGBQUAD* _pBuffer, int nWidth, int nHeight) { const RGBQUAD * pBuffer = _pBuffer, * pBufferEnd = pBuffer + (nWidth * nHeight); RGBQUAD * pBufferTmp = m_pColorRGBX; while (pBuffer < pBufferEnd) { *pBufferTmp = *pBuffer; ++pBufferTmp; ++pBuffer; } }
4.合成为点云:
基于CoordinateMappingBasics-D2D Example修改
osg::ref_ptr<osg::Node> CMotionRecognition::AssembleAsPointCloud(float _angle, int _axisX, int _axisY, int _axisZ) { if (!m_pKinectSensor) { return E_FAIL; } // osg空间坐标 osg::ref_ptr<osg::Vec3Array> point3dVec = new osg::Vec3Array(); // osg颜色值 osg::ref_ptr<osg::Vec4Array> colorVec = new osg::Vec4Array(); ICoordinateMapper * m_pCoordinateMapper = nullptr; HRESULT hr = m_pKinectSensor->get_CoordinateMapper(&m_pCoordinateMapper); for (size_t y = 0; y != nDepthHeight; y++) { for (size_t x = 0; x != nDepthWidth; x++) { DepthSpacePoint depthSpacePoint = { static_cast<float>(x), static_cast<float>(y) }; UINT16 currDepth = pDepthBuffer[y * nDepthWidth + x];
// Coordinate Mapping Depth to Color Space ColorSpacePoint colorSpacePoint = { 0.0f, 0.0f }; m_pCoordinateMapper->MapDepthPointToColorSpace(depthSpacePoint, currDepth, &colorSpacePoint); int colorX = static_cast<int>(std::floor(colorSpacePoint.X + 0.5f)), colorY = static_cast<int>(std::floor(colorSpacePoint.Y + 0.5f)); if ((0 <= colorX) && (colorX < nColorWidth) && (0 <= colorY) && (colorY < nColorHeight)) { RGBQUAD color = m_pColorRGBX[colorY * nColorWidth + colorX]; colorVec->push_back(osg::Vec4f((float)color.rgbBlue / 255, (float)color.rgbGreen / 255, (float)color.rgbRed / 255, 1)); }
// Coordinate Mapping Depth to Camera Space CameraSpacePoint cameraSpacePoint = { 0.0f, 0.0f, 0.0f }; m_pCoordinateMapper->MapDepthPointToCameraSpace(depthSpacePoint, currDepth, &cameraSpacePoint); if ((0 <= colorX) && (colorX < nColorWidth) && (0 <= colorY) && (colorY < nColorHeight)) { point3dVec->push_back(osg::Vec3(cameraSpacePoint.X, cameraSpacePoint.Y, cameraSpacePoint.Z)); } } } // 叶节点 osg::ref_ptr<osg::Geode> geode = new osg::Geode(); // 用来存储几何数据信息 构造图像 保存了顶点数组数据的渲染指令 osg::ref_ptr<osg::Geometry> geom = new osg::Geometry(); geom->setVertexArray(point3dVec.get()); geom->setColorArray(colorVec.get());
// 每一个颜色对应着一个顶点 geom->setColorBinding(osg::Geometry::BIND_PER_VERTEX); // 指定数据绘制的方式 geom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::POINTS, 0, point3dVec->size())); // 加载到Geode中 geode->addDrawable(geom.get());
return geode; }
下面是使用GLUT显示的结果:
可以看到帧率只有2.1左右,在后期要是在需要做处理的话则要更小了.
若谁还有更好的办法生成点云的话,欢迎留言 : )