zoukankan      html  css  js  c++  java
  • Deep Learning with pytorch笔记(第三章)

    3.7Tensor底层原理
    真正管理存储这数据的内存区域的,是类Storage的实例,这个Storage的实例通过一个一维数组来存储数据。不管外在表现为多少维的数组,都是存储在一个一维数组中。而怎么让这个一维数组看起来像多维数组,就是Tensor完成的。
    Storage类中有一个指针指向存储数据的一位数组,而Tensor通过对Storage进行封装,使得在外部看来数据是多维的。

    那么如何得到tensor中的某个值在Storage的索引位置呢?

    [offset_{i,j} = stride[0]*i + stride[1]*j + storage\_offset quad (1) ]

    其中,(i,j)为该值在tensor中的索引,以二维tensor为例。

    storage_offset 一个指向该Tensor元素开始的Storage索引,因为可能有些Tensor只使用了Storage的一部分,它控制着每个Tensor的起始位置,一般为0。
    stride 一个元组,表示获取一个Storage中的一个元素需要在每个维度上跳过多少个元素。
    比如下图:

    stride=(3.1)storage_offset=0,根据方程(1),tensor中第2行第2列的值3在Storage中的索引: (3*1+1*1 + 0=4)

    a = torch.tensor([[5, 7, 4], [1, 3, 2], [7, 3, 8]])
    print(a)
    print(a.storage())
    print("size is {}".format(a.size()))
    print("stride is {}".format(a.stride()))
    print("storage offset is {}".format(a.storage_offset()))
    
  • 相关阅读:
    MSSQL的基础应用
    SQLLite的使用
    C#反射调用其它DLL的委托事件 传值
    SQLServer 取 字段名称 类型 字段描述 等
    WCF跨域 客户端无法访问
    不同的数据库数据类型映射
    用人四策
    思考集体跳槽
    C/C++/Qt 统计运行时间
    CUDA项目属性设置
  • 原文地址:https://www.cnblogs.com/leimu/p/13294563.html
Copyright © 2011-2022 走看看