zoukankan      html  css  js  c++  java
  • 从RNN到Sequence2Sequence(三) GRU

    一、概述

    理解了LSTM之后,GRU就很好理解。
    首先GRU有两个门:
    reset gate 重置门 (r_t):用于控制前一时刻的隐含层状态有多大程度更新到当前候选隐含层状态:

    [r_t=sigma(W_rx_t + U_r h_{t-1}) ag{1} ]

    update gate 更新门(z_t):用于控制前一时刻的隐含层状态有多大程度更新到当前隐含层状态:

    [z_t=sigma(W_zx_t+U_zh_{t-1}) ag{2} ]

    两个隐藏层:
    候选隐藏层( ilde{h}_t),这个候选隐藏层 和LSTM中的 (c_t)是类似,可以看成是当前时刻的新信息,其中(r_t)用来控制需要保留多少之前的记忆:

    [ ilde{h}_t = tanh(Wx_t + U[r_t odot h_{t-1}]) ag{3} ]

    ( ilde{h}_t) 就是GRU记录到的所有重要信息,表示当前记忆内容比如在语言模型中,可能保存了主语单复数,主语的性别,当前时态等所有记录的重要信息。

    隐藏层(h_t)。最后(z_t)控制需要从前一时刻的隐藏层(h_{t-1})中遗忘多少信息,需要加入多少当前时刻的隐藏层信息( ilde{h}_t)(h_t)即为最后输出的隐藏层信息:

    [h_t = (1-z_t)*h_{t-1} + z_t odot $ ilde{h}_t ag{4} ]

    需要注意的是,虽然隐藏层信息的符号和当前记忆内容的符号相似,但是这两者是有一定的区别的。当前记忆内容在上文中已经说明了是当前时刻保存的所有信息,而隐藏层信息则是当前时刻所需要的信息。
    比如在语言模型中,在当前时刻可能我们只需要知道当前时态和主语单复数就可以确定当前动词使用什么时态,而不需要其他更多的信息。

    一般来说那些具有短距离依赖的单元reset gate比较活跃(如果(r_t)为1,而(z_T)为0 那么相当于变成了一个标准的RNN,能处理短距离依赖),具有长距离依赖的单元update gate比较活跃。

    二、一个示例

    tensorflow有两个类实现了GRU

    • tf.contrib.rnn.GRUCell
    • tf.nn.rnn_cell.GRUCell
    import tensorflow as tf
    batch_size=10
    depth=128
    output_dim=100
    inputs=tf.Variable(tf.random_normal([batch_size,depth]))
    previous_state=tf.Variable(tf.random_normal([batch_size,output_dim])) #前一个状态的输出
    gruCell=tf.nn.rnn_cell.GRUCell(output_dim) # 隐层神经元个数为output_dim
    output,state=gruCell(inputs,previous_state)
    print(output) # shape=(10, 100),
    print(state) # shape=(10, 100) 返回相同的值
    

    GRU的输出和LSTM的区别:
    GRU返回值output 和 state具有相同的值。

    参考资料

    1、深入理解lstm及其变种gru
    https://zhuanlan.zhihu.com/p/34203833

  • 相关阅读:
    前端神器avalonJS入门(一)
    emmet的使用
    VS2015中SharedProject与可移植类库(PCL)项目
    Map工具系列-08-map控件查看器
    Map工具系列-07-TFS变更集提取工具
    Map工具系列-06-销售营改增历史数据处理工具
    2018.04.02 matplotlib 图名,图例,轴标签,轴边界,轴刻度,轴刻度标签
    2018.03.30 abap屏幕标签保存之前执行过的状态
    2018.03.29 python-matplotlib 图表生成
    2018.03.29 python-pandas 数据读取
  • 原文地址:https://www.cnblogs.com/leimu/p/13740907.html
Copyright © 2011-2022 走看看