Triangular Sums
时间限制:3000 ms | 内存限制:65535 KB
难度:2
- 描述
-
The nth Triangular number, T(n) = 1 + … + n, is the sum of the first n integers. It is the number of points in a triangular array with n points on side. For example T(4):
X
X X
X X X
X X X X
Write a program to compute the weighted sum of triangular numbers:
W(n) =
SUM[k = 1…n; k * T(k + 1)]- 输入
- The first line of input contains a single integer N, (1 ≤ N ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer n, (1 ≤ n ≤300), which is the number of points on a side of the triangle. - 输出
- For each dataset, output on a single line the dataset number (1 through N), a blank, the value of n for the dataset, a blank, and the weighted sum ,W(n), of triangular numbers for n.
- 样例输入
-
4 3 4 5 10
- 样例输出
-
1 3 45 2 4 105 3 5 210 4 10 2145
- 来源
- Greater New York 2006
- 上传者
01.#include<stdio.h>02.intWN(intn)03.{04.inti,sum=0;05.for(i=1;i<n+1;i++)06.{07.sum+=i*((i+1)*(i+2))/2;08.}09.returnsum;10.}11.intmain()12.{13.inti,N,n,a[1000];14.scanf("%d",&N);15.for(i=0;i<N;i++)16.{17.scanf("%d",&a[i]);18.}19.for(i=0;i<N;i++)20.{21.printf("%d %d %d ",i+1,a[i],WN(a[i]));22.}23.24.return0;25.}