zoukankan      html  css  js  c++  java
  • Camshift算法原理及其Opencv实现

    Camshift原理
    camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。

    分为三个部分:
    1--色彩投影图(反向投影):
    (1).RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。(2).然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。(3).将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。

    2--meanshift
    meanshift算法是一种密度函数梯度估计的非参数方法,通过迭代寻优找到概率分布的极值来定位目标。
    算法过程为:
    (1).在颜色概率分布图中选取搜索窗W
    (2).计算零阶距:

    计算一阶距:

    计算搜索窗的质心:

    (3).调整搜索窗大小
    宽度为;长度为1.2s;
    (4).移动搜索窗的中心到质心,如果移动距离大于预设的固定阈值,则重复2)3)4),直到搜索窗的中心与质心间的移动距离小于预设的固定阈值,或者循环运算的次数达到某一最大值,停止计算。关于meanshift的收敛性证明可以google相关文献。

    3--camshift
    将meanshift算法扩展到连续图像序列,就是camshift算法。它将视频的所有帧做meanshift运算,并将上一帧的结果,即搜索窗的大小和中心,作为下一帧meanshift算法搜索窗的初始值。如此迭代下去,就可以实现对目标的跟踪。
    算法过程为:
    (1).初始化搜索窗
    (2).计算搜索窗的颜色概率分布(反向投影)
    (3).运行meanshift算法,获得搜索窗新的大小和位置。
    (4).在下一帧视频图像中用(3)中的值重新初始化搜索窗的大小和位置,再跳转到(2)继续进行。

    camshift能有效解决目标变形和遮挡的问题,对系统资源要求不高,时间复杂度低,在简单背景下能够取得良好的跟踪效果。但当背景较为复杂,或者有许多与目标颜色相似像素干扰的情况下,会导致跟踪失败。因为它单纯的考虑颜色直方图,忽略了目标的空间分布特性,所以这种情况下需加入对跟踪目标的预测算法。

    OpenCV实现camshift算法的例子:

    //对运动物体的跟踪:
    //如果背景固定,可用帧差法 然后在计算下连通域 将面积小的去掉即可
    //如果背景单一,即你要跟踪的物体颜色和背景色有较大区别 可用基于颜色的跟踪 如CAMSHIFT 鲁棒性都是较好的
    //如果背景复杂,如背景中有和前景一样的颜色 就需要用到一些具有预测性的算法 如卡尔曼滤波等 可以和CAMSHIFT结合 
    
    #ifdef _CH_
    #pragma package <opencv>
    #endif
    
    #ifndef _EiC
    #include "cv.h"
    #include "highgui.h"
    #include <stdio.h>
    #include <ctype.h>
    #endif
    
    IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0;
    //用HSV中的Hue分量进行跟踪
    CvHistogram *hist = 0;
    //直方图类
    int backproject_mode = 0;
    int select_object = 0;
    int track_object = 0;
    int show_hist = 1;
    CvPoint origin;
    CvRect selection;
    CvRect track_window;
    CvBox2D track_box;
    //Meanshift跟踪算法返回的Box类
    //typedef struct CvBox2D{
    //CvPoint2D32f center; /* 盒子的中心 */
    //CvSize2D32f size; /* 盒子的长和宽 */
    //float angle; /* 水平轴与第一个边的夹角,用弧度表示*/
    //}CvBox2D;
    CvConnectedComp track_comp;
    //连接部件 
    //typedef struct CvConnectedComp{
    //double area; /* 连通域的面积 */
    //float value; /* 分割域的灰度缩放值 */
    //CvRect rect; /* 分割域的 ROI */
    //} CvConnectedComp;
    int hdims = 16;
    //划分直方图bins的个数,越多越精确
    float hranges_arr[] = {0,180};
    //像素值的范围
    float* hranges = hranges_arr;
    //用于初始化CvHistogram类
    int vmin = 10, vmax = 256, smin = 30;
    //用于设置滑动条
    
    void on_mouse( int event, int x, int y, int flags, void* param )
    //鼠标回调函数,该函数用鼠标进行跟踪目标的选择
    {
        if( !image )
            return;
    
        if( image->origin )
            y = image->height - y;
        //如果图像原点坐标在左下,则将其改为左上
    	
        if( select_object )
        //select_object为1,表示在用鼠标进行目标选择
        //此时对矩形类selection用当前的鼠标位置进行设置
        {
            selection.x = MIN(x,origin.x);
            selection.y = MIN(y,origin.y);
            selection.width = selection.x + CV_IABS(x - origin.x);
            selection.height = selection.y + CV_IABS(y - origin.y);
            
            selection.x = MAX( selection.x, 0 );
            selection.y = MAX( selection.y, 0 );
            selection.width = MIN( selection.width, image->width );
            selection.height = MIN( selection.height, image->height );
            selection.width -= selection.x;
            selection.height -= selection.y;
        }
    
        switch( event )
        {
        case CV_EVENT_LBUTTONDOWN:
        	//鼠标按下,开始点击选择跟踪物体
            origin = cvPoint(x,y);
            selection = cvRect(x,y,0,0);
            select_object = 1;
            break;
        case CV_EVENT_LBUTTONUP:
        	//鼠标松开,完成选择跟踪物体
            select_object = 0;
            if( selection.width > 0 && selection.height > 0 )
            	//如果选择物体有效,则打开跟踪功能
                track_object = -1;
            break;
        }
    }
    
    
    CvScalar hsv2rgb( float hue )
    //用于将Hue量转换成RGB量
    {
        int rgb[3], p, sector;
        static const int sector_data[][3]=
            {{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};
        hue *= 0.033333333333333333333333333333333f;
        sector = cvFloor(hue);
        p = cvRound(255*(hue - sector));
        p ^= sector & 1 ? 255 : 0;
    
        rgb[sector_data[sector][0]] = 255;
        rgb[sector_data[sector][1]] = 0;
        rgb[sector_data[sector][2]] = p;
    
        return cvScalar(rgb[2], rgb[1], rgb[0],0);
    }
    
    int main( int argc, char** argv )
    {
        CvCapture* capture = 0;
        
        if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
        	//打开摄像头
            capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
        else if( argc == 2 )
        	//打开avi
            capture = cvCaptureFromAVI( argv[1] ); 
    
        if( !capture )
        //打开视频流失败
        {
            fprintf(stderr,"Could not initialize capturing...
    ");
            return -1;
        }
    
        printf( "Hot keys: 
    "
            "	ESC - quit the program
    "
            "	c - stop the tracking
    "
            "	b - switch to/from backprojection view
    "
            "	h - show/hide object histogram
    "
            "To initialize tracking, select the object with mouse
    " );
    	//打印程序功能列表
    	
        cvNamedWindow( "Histogram", 1 );
        //用于显示直方图
        cvNamedWindow( "CamShiftDemo", 1 );
        //用于显示视频
        cvSetMouseCallback( "CamShiftDemo", on_mouse, 0 );
        //设置鼠标回调函数
        cvCreateTrackbar( "Vmin", "CamShiftDemo", &vmin, 256, 0 );
        cvCreateTrackbar( "Vmax", "CamShiftDemo", &vmax, 256, 0 );
        cvCreateTrackbar( "Smin", "CamShiftDemo", &smin, 256, 0 );
        //设置滑动条
    
        for(;;)
        //进入视频帧处理主循环
        {
            IplImage* frame = 0;
            int i, bin_w, c;
    
            frame = cvQueryFrame( capture );
            if( !frame )
                break;
    
            if( !image )
            //image为0,表明刚开始还未对image操作过,先建立一些缓冲区
            {
                image = cvCreateImage( cvGetSize(frame), 8, 3 );
                image->origin = frame->origin;
                hsv = cvCreateImage( cvGetSize(frame), 8, 3 );
                hue = cvCreateImage( cvGetSize(frame), 8, 1 );
                mask = cvCreateImage( cvGetSize(frame), 8, 1 );
                //分配掩膜图像空间
                backproject = cvCreateImage( cvGetSize(frame), 8, 1 );
                //分配反向投影图空间,大小一样,单通道
                hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 );
                //分配直方图空间
                histimg = cvCreateImage( cvSize(320,200), 8, 3 );
                //分配用于直方图显示的空间
                cvZero( histimg );
                //置背景为黑色
            }
    
            cvCopy( frame, image, 0 );
            cvCvtColor( image, hsv, CV_BGR2HSV );
            //把图像从RGB表色系转为HSV表色系
    
            if( track_object )
            //track_object非零,表示有需要跟踪的物体
            {
                int _vmin = vmin, _vmax = vmax;
    
                cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0),
                            cvScalar(180,256,MAX(_vmin,_vmax),0), mask );
                //制作掩膜板,只处理像素值为H:0~180,S:smin~256,V:vmin~vmax之间的部分
                cvSplit( hsv, hue, 0, 0, 0 );
    			//分离H分量
    			
                if( track_object < 0 )
                //如果需要跟踪的物体还没有进行属性提取,则进行选取框类的图像属性提取
                {
                    float max_val = 0.f;
                    cvSetImageROI( hue, selection );
                    //设置原选择框为ROI
                    cvSetImageROI( mask, selection );
                    //设置掩膜板选择框为ROI
                    cvCalcHist( &hue, hist, 0, mask );
                    //得到选择框内且满足掩膜板内的直方图
                    cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 );
                    cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 );
                    // 对直方图的数值转为0~255
                    cvResetImageROI( hue );
                    //去除ROI
                    cvResetImageROI( mask );
                    //去除ROI
                    track_window = selection;
                    track_object = 1;
    				//置track_object为1,表明属性提取完成
                    cvZero( histimg );
                    bin_w = histimg->width / hdims;
                    for( i = 0; i < hdims; i++ )
                    //画直方图到图像空间
                    {
                        int val = cvRound( cvGetReal1D(hist->bins,i)*histimg->height/255 );
                        CvScalar color = hsv2rgb(i*180.f/hdims);
                        cvRectangle( histimg, cvPoint(i*bin_w,histimg->height),
                                     cvPoint((i+1)*bin_w,histimg->height - val),
                                     color, -1, 8, 0 );
                    }
                }
    
                cvCalcBackProject( &hue, backproject, hist );
                //计算hue的反向投影图
                cvAnd( backproject, mask, backproject, 0 );
                //得到掩膜内的反向投影
                cvCamShift( backproject, track_window,
                            cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ),
                            &track_comp, &track_box );
                //使用MeanShift算法对backproject中的内容进行搜索,返回跟踪结果
                track_window = track_comp.rect;
                //得到跟踪结果的矩形框
                
                if( backproject_mode )
                    cvCvtColor( backproject, image, CV_GRAY2BGR );
                    
                if( image->origin )
                    track_box.angle = -track_box.angle;
                cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 );
                //画出跟踪结果的位置
            }
            
            if( select_object && selection.width > 0 && selection.height > 0 )
            //如果正处于物体选择,画出选择框
            {
                cvSetImageROI( image, selection );
                cvXorS( image, cvScalarAll(255), image, 0 );
                cvResetImageROI( image );
            }
    
            cvShowImage( "CamShiftDemo", image );
            cvShowImage( "Histogram", histimg );
    
            c = cvWaitKey(10);
            if( (char) c == 27 )
                break;
            switch( (char) c )
            //按键切换功能
            {
            case 'b':
                backproject_mode ^= 1;
                break;
            case 'c':
                track_object = 0;
                cvZero( histimg );
                break;
            case 'h':
                show_hist ^= 1;
                if( !show_hist )
                    cvDestroyWindow( "Histogram" );
                else
                    cvNamedWindow( "Histogram", 1 );
                break;
            default:
                ;
            }
        }
    
        cvReleaseCapture( &capture );
        cvDestroyWindow("CamShiftDemo");
    
        return 0;
    }
    
    #ifdef _EiC
    main(1,"camshiftdemo.c");
    #endif
    



     

  • 相关阅读:
    Jmeter学习笔记-初级
    python selenium利用 126.com id自动生成
    Python代码无法保存
    卸载python2.7出错
    python pip用法
    pycharm 连接数据库
    Python打包PyPI上传实践
    Python实现Api的Mock测试
    抓包工具使用
    Jenkins+Ant可持续集成Jmeter脚本
  • 原文地址:https://www.cnblogs.com/leixiaohua1020/p/3902149.html
Copyright © 2011-2022 走看看