算法具体可以参照其他的博客:
随机梯度下降:
# coding=utf-8 ''' 随机梯度下降 ''' import numpy as np # 构造训练数据 x = np.arange(0., 10., 0.2) m = len(x) x0 = np.full(m, 1.0) input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量 target_data = 3 * x + 8 + np.random.randn(m) max_iter = 10000 # 最大迭代次数 epsilon = 1e-5 # 初始化权值 w = np.random.randn(2) # w = np.zeros(2) alpha = 0.001 # 步长 diff = 0. error = np.zeros(2) count = 0 # 循环次数 print '随机梯度下降算法'.center(60, '=') while count < max_iter: count += 1 for j in range(m): diff = np.dot(w, input_data[j]) - target_data[j] # 训练集代入,计算误差值 # 这里的随机性表现在:一个样本更新一次参数! w = w - alpha * diff * input_data[j] if np.linalg.norm(w - error) < epsilon: # 直接通过np.linalg包求两个向量的范数 break else: error = w print 'loop count = %d' % count, ' w:[%f, %f]' % (w[0], w[1])
# coding=utf-8 """ 批量梯度下降 """ import numpy as np # 构造训练数据 x = np.arange(0., 10., 0.2) m = len(x) x0 = np.full(m, 1.0) input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量 target_data = 3 * x + 8 + np.random.randn(m) # 停止条件 max_iter = 10000 epsilon = 1e-5 # 初始化权值 w = np.random.randn(2) # w = np.zeros(2) alpha = 0.001 # 步长 diff = 0. error = np.zeros(2) count = 0 # 循环次数 while count < max_iter: count += 1 sum_m = np.zeros(2) for i in range(m): dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i] sum_m = sum_m + dif ''' for j in range(m): diff = np.dot(w, input_data[j]) - target_data[j] # 训练集代入,计算误差值 w = w - alpha * diff * input_data[j] ''' w = w - alpha * sum_m if np.linalg.norm(w - error) < epsilon: break else: error = w print 'loop count = %d' % count, ' w:[%f, %f]' % (w[0], w[1])
小批量梯度下降:
# coding=utf-8 """ 小批量梯度下降 """ import numpy as np import random # 构造训练数据 x = np.arange(0., 10., 0.2) m = len(x) x0 = np.full(m, 1.0) input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量 target_data = 3 * x + 8 + np.random.randn(m) # 两种终止条件 max_iter = 10000 epsilon = 1e-5 # 初始化权值 np.random.seed(0) w = np.random.randn(2) # w = np.zeros(2) alpha = 0.001 # 步长 diff = 0. error = np.zeros(2) count = 0 # 循环次数 while count < max_iter: count += 1 sum_m = np.zeros(2) index = random.sample(range(m), int(np.ceil(m * 0.2))) sample_data = input_data[index] sample_target = target_data[index] for i in range(len(sample_data)): dif = (np.dot(w, input_data[i]) - target_data[i]) * input_data[i] sum_m = sum_m + dif w = w - alpha * sum_m if np.linalg.norm(w - error) < epsilon: break else: error = w print 'loop count = %d' % count, ' w:[%f, %f]' % (w[0], w[1])
通过迭代,结果会收敛到8和3:
loop count = 704 w:[8.025972, 2.982300]