题目
思路
看看做做 阴阳 这道题
极力推荐
自从做了这道题后,这些题就变成秒切的题了
很容易想到求节点到分治中心的距离,然后 (mod 3)
那么在求根节点一棵子树的答案时直接加上 (dis[(3-x) mod 3]) 的个数
用个桶 (buc) 来记录,若当前节点的 (dis mod 3) 后结果为 (0),说明它到跟也为合法路径,此时 (res) 要额外 (+1)
统计完一个子树的贡献后再将子树的信息加入桶中
统计完所有子树,重新选根前再 (dfs) 一遍清除 (buc)
(Code)
#include<cstdio>
#include<iostream>
using namespace std;
const int N = 2e4 + 5;
int n , h[N] , tot , size , siz[N] , son[N] , dis[N] , use[N] , ans , rt , buc[5];
struct edge{
int to , nxt , w;
}e[N * 2];
inline void add(int x , int y , int z)
{
e[++tot].to = y;
e[tot].w = z;
e[tot].nxt = h[x];
h[x] = tot;
}
inline void getrt(int x , int fa)
{
son[x] = 0 , siz[x] = 1;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (v == fa || use[v]) continue;
getrt(v , x);
siz[x] += siz[v];
son[x] = max(son[x] , siz[v]);
}
son[x] = max(son[x] , size - siz[x]);
rt = son[x] < son[rt] ? x : rt;
}
inline void getdis(int x , int fa)
{
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (v == fa || use[v]) continue;
dis[v] = (dis[x] + e[i].w) % 3;
getdis(v , x);
}
}
inline int dfs(int x , int fa)
{
int res = 0;
res += buc[(3 - dis[x]) % 3] + (dis[x] == 0 ? 1 : 0);
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (v == fa || use[v]) continue;
res += dfs(v , x);
}
return res;
}
inline void fill(int x , int fa)
{
buc[dis[x]]++;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (v == fa || use[v]) continue;
fill(v , x);
}
}
inline void clear(int x , int fa)
{
buc[dis[x]]--;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (v == fa || use[v]) continue;
clear(v , x);
}
dis[x] = 0;
}
inline int calc(int x)
{
dis[x] = 0;
getdis(x , 0);
int res = 0;
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (use[v]) continue;
res += dfs(v , x) , fill(v , x);
}
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (use[v]) continue;
clear(v , x);
}
return res;
}
inline void divide(int x)
{
use[x] = 1 , ans += calc(x);
for(register int i = h[x]; i; i = e[i].nxt)
{
int v = e[i].to;
if (use[v]) continue;
size = siz[v] , rt = 0;
getrt(v , x) , divide(rt);
}
}
inline int gcd(int a , int b){return b == 0 ? a : gcd(b , a % b);}
int main()
{
scanf("%d" , &n);
int u , v , w;
for(register int i = 1; i < n; i++)
{
scanf("%d%d%d" , &u , &v , &w);
add(u , v , w) , add(v , u , w);
}
son[0] = 2e9 , size = n , rt = 0;
getrt(1 , 0) , divide(rt);
ans = ans * 2 + n;
int tmp = n * n , d = gcd(ans , tmp);
printf("%d/%d" , ans / d , tmp / d);
}