解析
转移方程很容易推:(f_i = max(f_j + a * (s_i - s_j)^2 + b * (s_i - s_j) + c))
然后当 (j>k) 时,如果 (j) 更优
那么 (f_j + a * (s_i - s_j)^2 + b * (s_i - s_j) + c > f_k + a * (s_i - s_k)^2 + b * (s_i - s_k) + c)
整理得:((f_j + a * s_j^2 - b * s_j) - (f_k + a * s_k^2 - b * s_k) > 2 * a * s_i * (s_j-s_k))
因为 (s_j-s_k) 大于零
所以我们可以把不等式两边同除 (s_j-s_k) (不除 (2*a),当然也可以除,但注意 (a < 0),除过去要变号)
于是就成了
[frac{(f_j + a imes s_j^2 - b imes s_j) - (f_k + a imes s_k^2 - b imes s_k)}{s_j-s_k} > 2 a imes s_i
]
既然是大于号,那么维护上凸壳
右边单调减,单调队列维护即可
(Code)
#include<cstdio>
using namespace std;
typedef long long LL;
const int N = 1e6 + 5;
int n , l , r;
LL a , b , c , f[N] , q[N] , s[N];
double slope(int u , int v)
{
return 1.0 * ((f[u] + a * s[u] * s[u] - b * s[u]) - (f[v] + a * s[v] * s[v] - b * s[v]))
/ (s[u] - s[v]);
}
int main()
{
scanf("%d%lld%lld%lld" , &n , &a , &b , &c);
for(register int i = 1; i <= n; i++) scanf("%lld" , &s[i]) , s[i] += s[i - 1];
q[l = r = 1] = 0;
for(register int i = 1; i <= n; i++)
{
while (l < r && slope(q[l] , q[l + 1]) > 2.0 * a * s[i]) l++;
f[i] = f[q[l]] + a * (s[i] - s[q[l]]) * (s[i] - s[q[l]]) + b * (s[i] - s[q[l]]) + c;
while (r >= l && slope(q[r] , q[r - 1]) < slope(q[r] , i)) r--;
q[++r] = i;
}
printf("%lld" , f[n]);
}