zoukankan      html  css  js  c++  java
  • [NOIP2018 提高组] 保卫王国

    题解

    两只 (log) 的动态 (dp)
    相比标算倍增
    动态 (dp) 既实用又好理解

    (Code)

    #include<cstdio>
    #include<iostream>
    #define ls (p << 1)
    #define rs (ls | 1)
    using namespace std;
    typedef long long LL;
    
    const int N = 1e5 + 5;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    int n, m, p[N];
    char type[10];
    LL f[N][2], g[N][2];
    
    int h[N];
    struct edge{int to, nxt;}e[N << 1];
    inline void add(int x, int y)
    {
    	static int tot = 0;
    	e[++tot] = edge{y, h[x]}, h[x] = tot;
    }
    
    struct Matrix{
    	LL a[2][2];
    	inline Matrix(){a[0][0] = a[0][1] = a[1][0] = a[1][1] = INF;}
    	inline Matrix operator*(const Matrix &b)
    	{
    		Matrix c;
    		for(register int i = 0; i < 2; i++)
    			for(register int j = 0; j < 2; j++)
    				for(register int k = 0; k < 2; k++)
    				c.a[i][j] = min(c.a[i][j], a[i][k] + b.a[k][j]);
    		return c;
    	}
    }seg[N << 2];
    inline Matrix I()
    {
    	Matrix c;
    	c.a[0][0] = c.a[1][1] = 0, c.a[0][1] = c.a[1][0] = INF;
    	return c;
    }
    inline Matrix Node(LL g0, LL g1)
    {
    	Matrix c;
    	c.a[0][0] = INF, c.a[0][1] = g0, c.a[1][0] = c.a[1][1] = g1;
    	return c;
    }
    
    int fa[N], son[N], siz[N], top[N], bot[N], dfn[N];
    void dfs1(int x)
    {
    	siz[x] = 1, f[x][1] = p[x];
    	for(register int i = h[x]; i; i = e[i].nxt)
    	{
    		int v = e[i].to;
    		if (v == fa[x]) continue;
    		fa[v] = x, dfs1(v), siz[x] += siz[v];
    		if (siz[v] > siz[son[x]]) son[x] = v;
    		f[x][0] += f[v][1], f[x][1] += min(f[v][0], f[v][1]);
    	}
    }
    void dfs2(int x)
    {
    	static int dfc = 0;
    	dfn[x] = ++dfc, g[x][1] = p[x];
    	if (son[x]) top[son[x]] = top[x], dfs2(son[x]);
    	else bot[top[x]] = dfn[x];
    	for(register int i = h[x]; i; i = e[i].nxt)
    	{
    		int v = e[i].to;
    		if (v == fa[x] || v == son[x]) continue;
    		top[v] = v, g[x][0] += f[v][1], g[x][1] += min(f[v][0], f[v][1]);
    		dfs2(v);
    	}
    }
    
    void update(int p, int l, int r, int x, Matrix v)
    {
    	if (l == r) return void(seg[p] = v);
    	int mid = (l + r) >> 1;
    	if (x <= mid) update(ls, l, mid, x, v);
    	else update(rs, mid + 1, r, x, v);
    	seg[p] = seg[ls] * seg[rs];
    }
    Matrix query(int p, int l, int r, int tl, int tr)
    {
    	if (tl <= l && r <= tr) return seg[p];
    	int mid = (l + r) >> 1;
    	Matrix ret = I();
    	if (tl <= mid) ret = query(ls, l, mid, tl, tr);
    	if (tr > mid) ret = ret * query(rs, mid + 1, r, tl, tr);
    	return ret;
    }
    
    inline void change(int x)
    {
    	while (x)
    	{
    		update(1, 1, n, dfn[x], Node(g[x][0], g[x][1])), x = top[x];
    		Matrix ret = query(1, 1, n, dfn[x], bot[x]);
    		g[fa[x]][0] -= f[x][1], g[fa[x]][1] -= min(f[x][0], f[x][1]);
    		f[x][0] = ret.a[0][1], f[x][1] = ret.a[1][1];
    		g[fa[x]][0] += f[x][1], g[fa[x]][1] += min(f[x][0], f[x][1]);
    		x = fa[x];
    	}
    }
    
    int main()
    {
    	freopen("defense.in", "r", stdin);
    	freopen("defense.out", "w", stdout);
    	scanf("%d%d%s", &n, &m, type);
    	for(register int i = 1; i <= n; i++) scanf("%d", p + i);
    	for(register int i = 1, u, v; i < n; i++) scanf("%d%d", &u, &v), add(u, v), add(v, u);
    	dfs1(1), top[1] = 1, dfs2(1);
    	for(register int i = 1; i <= n; i++) update(1, 1, n, dfn[i], Node(g[i][0], g[i][1]));
    	for(register int i = 1; i <= m; i++)
    	{
    		int a, b, x, y;
    		scanf("%d%d%d%d", &a, &x, &b, &y), x ^= 1, y ^= 1;
    		LL u = g[a][x], v = g[b][y];
    		g[a][x] = INF, change(a), g[b][y] = INF, change(b);
    		printf("%lld
    ", min(f[1][0], f[1][1]) < INF ? min(f[1][0], f[1][1]) : -1LL);
    		g[a][x] = u, change(a), g[b][y] = v, change(b);
    	}
    }
    

    但如果两只 (log) 被卡了呢?
    一种比较优秀的卡常方法是对于每条重链开一颗线段树维护
    然后跳的时候询问可直接获取

    (Code)

    #include<cstdio>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    
    const int N = 1e5 + 5;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    int n, m, p[N];
    char type[10];
    LL f[N][2], g[N][2];
    
    int h[N];
    struct edge{int to, nxt;}e[N << 1];
    inline void add(int x, int y)
    {
    	static int tot = 0;
    	e[++tot] = edge{y, h[x]}, h[x] = tot;
    }
    
    int fa[N], son[N], siz[N], top[N], bot[N], dfn[N];
    void dfs1(int x)
    {
    	siz[x] = 1, f[x][1] = p[x];
    	for(register int i = h[x]; i; i = e[i].nxt)
    	{
    		int v = e[i].to;
    		if (v == fa[x]) continue;
    		fa[v] = x, dfs1(v), siz[x] += siz[v];
    		if (siz[v] > siz[son[x]]) son[x] = v;
    		f[x][0] += f[v][1], f[x][1] += min(f[v][0], f[v][1]);
    	}
    }
    void dfs2(int x)
    {
    	static int dfc = 0;
    	dfn[x] = ++dfc, g[x][1] = p[x];
    	if (son[x]) top[son[x]] = top[x], dfs2(son[x]);
    	else bot[top[x]] = dfn[x];
    	for(register int i = h[x]; i; i = e[i].nxt)
    	{
    		int v = e[i].to;
    		if (v == fa[x] || v == son[x]) continue;
    		top[v] = v, g[x][0] += f[v][1], g[x][1] += min(f[v][0], f[v][1]);
    		dfs2(v);
    	}
    }
    
    struct Matrix{
    	LL a[2][2];
    	inline Matrix(){a[0][0] = a[0][1] = a[1][0] = a[1][1] = INF;}
    	inline Matrix operator*(const Matrix &b)
    	{
    		Matrix c;
    		for(register int i = 0; i < 2; i++)
    			for(register int j = 0; j < 2; j++)
    				for(register int k = 0; k < 2; k++)
    				c.a[i][j] = min(c.a[i][j], a[i][k] + b.a[k][j]);
    		return c;
    	}
    };
    inline Matrix I()
    {
    	Matrix c;
    	c.a[0][0] = c.a[1][1] = 0, c.a[0][1] = c.a[1][0] = INF;
    	return c;
    }
    inline Matrix Node(LL g0, LL g1)
    {
    	Matrix c;
    	c.a[0][0] = INF, c.a[0][1] = g0, c.a[1][0] = c.a[1][1] = g1;
    	return c;
    }
    struct node{Matrix val; int ls, rs;}seg[N << 2];
    int rt[N];
    
    void build(int &p, int l, int r)
    {
        static int size = 0;
        if (!p) p = ++size;
        if(l == r) return;
        int mid = (l + r) >> 1;
        build(seg[p].ls, l, mid), build(seg[p].rs, mid + 1, r);
    }
    void update(int p, int l, int r, int x, Matrix v)
    {
    	if (l == r) return void(seg[p].val = v);
    	int mid = (l + r) >> 1;
    	if (x <= mid) update(seg[p].ls, l, mid, x, v);
    	else update(seg[p].rs, mid + 1, r, x, v);
    	seg[p].val = seg[seg[p].ls].val * seg[seg[p].rs].val;
    }
    
    inline void change(int x)
    {
    	while (x)
    	{
    		update(rt[top[x]], dfn[top[x]], bot[top[x]], dfn[x], Node(g[x][0], g[x][1])), x = top[x];
    		Matrix ret = seg[rt[x]].val;
    		g[fa[x]][0] -= f[x][1], g[fa[x]][1] -= min(f[x][0], f[x][1]);
    		f[x][0] = ret.a[0][1], f[x][1] = ret.a[1][1];
    		g[fa[x]][0] += f[x][1], g[fa[x]][1] += min(f[x][0], f[x][1]);
    		x = fa[x];
    	}
    }
    
    int main()
    {
    	freopen("defense.in", "r", stdin);
    	freopen("defense.out", "w", stdout);
    	scanf("%d%d%s", &n, &m, type);
    	for(register int i = 1; i <= n; i++) scanf("%d", p + i);
    	for(register int i = 1, u, v; i < n; i++) scanf("%d%d", &u, &v), add(u, v), add(v, u);
    	dfs1(1), top[1] = 1, dfs2(1);
    	for(register int i = 1; i <= n; i++) if (top[i] == i) build(rt[i], dfn[i], bot[i]);
    	for(register int i = 1; i <= n; i++) update(rt[top[i]], dfn[top[i]], bot[top[i]], dfn[i], Node(g[i][0], g[i][1]));
    	for(register int i = 1; i <= m; i++)
    	{
    		int a, b, x, y;
    		scanf("%d%d%d%d", &a, &x, &b, &y), x ^= 1, y ^= 1;
    		LL u = g[a][x], v = g[b][y];
    		g[a][x] = INF, change(a), g[b][y] = INF, change(b);
    		printf("%lld
    ", min(f[1][0], f[1][1]) < INF ? min(f[1][0], f[1][1]) : -1LL);
    		g[a][x] = u, change(a), g[b][y] = v, change(b);
    	}
    }
    
  • 相关阅读:
    matlab图像对比度增强,拉伸和灰度变换
    javascript 数据结构----集合
    reduce ,redceRight 在react中的使用
    找前端私活
    数组对象 按某个属性排序
    原生js获取scrollTop
    react 绑定事件 总是默认触发
    横向柱状图
    css 四角辉光
    Android学习笔记_点九绘图与软键盘和事件传递
  • 原文地址:https://www.cnblogs.com/leiyuanze/p/14311925.html
Copyright © 2011-2022 走看看