zoukankan      html  css  js  c++  java
  • CF1625D.Binary Spiders

    \(\text{Problem}\)

    大概就是给出 \(n\) 个数和 \(m\),要从中选最多的数使得两两异或值大于等于 \(m\)
    输出方案

    \(\text{Solution}\)

    一开始的想法很复杂、、、
    其实用到一个结论就做好了
    对于一个升序数列,它们两两间的异或最小值就是相邻数的异或最小值
    于是可以先排序,再 \(DP\)
    \(f_i\) 表示到第 \(i\) 位强制选 \(i\) 能选出最多的数的数量
    那么 \(f_i = f_{j} + 1(1\le j < i,a_j \oplus a_i \ge m)\)
    于是优化这个 \(O(n^2)\)\(DP\) 即可
    这就是个很简单的事
    考虑 \(j\) 的选取
    \(a_i \oplus a_j > m\),那么异或值从高位到低位一部分等于 \(m\),然后在某一位大于 \(m\)
    那么我们从高到低枚举位数,考虑在这一位之前等于 \(m\),统计这一位大于 \(m\) 的贡献
    讨论 \(m\)\(a_i\) 这一位的 \(0/1\) 值,发现可行数值区间是连续的,权值线段树即可
    最后再处理 \(a_i \oplus a_j = m\) 的贡献

    \(\text{Code}\)

    #include <cstdio> 
    #include <iostream>
    #include <algorithm>
    #define RE register
    #define IN inline
    using namespace std;
    typedef long long LL;
    
    const int N = 3e5 + 5;
    int n, m, f[N], g[N], Len, size, rt;
    struct node{int v, id;}a[N];
    IN bool cmp(node a, node b){return a.v < b.v;}
    
    int seg[N * 31], ls[N * 31], rs[N * 31];
    void Modify(int &p, int l, int r, int x, int v)
    {
    	if (!p) p = ++size;
    	if (l == r) return seg[p] = v, void();
    	int mid = l + r >> 1;
    	if (x <= mid) Modify(ls[p], l, mid, x, v);
    	else Modify(rs[p], mid + 1, r, x, v);
    	if (f[seg[ls[p]]] > f[seg[rs[p]]]) seg[p] = seg[ls[p]];
    	else seg[p] = seg[rs[p]];
    }
    int Query(int p, int l, int r, int x, int y)
    {
    	if (x > r || y < l) return 0;
    	if (x <= l && r <= y) return seg[p];
    	int mid = l + r >> 1, L = 0, R = 0;
    	if (ls[p] && x <= mid) L = Query(ls[p], l, mid, x, y);
    	if (rs[p] && y > mid)
    	{
    		R = Query(rs[p], mid + 1, r, x, y);
    		if (!L) L = R;
    		else{
    			if (f[L] > f[R]) return L;
    			return R;
    		}
    	}
    	return L;
    }
    
    int main()
    {
    	scanf("%d%d", &n, &m);
    	for(RE int i = 1; i <= n; i++) scanf("%d", &a[i].v), a[i].id = i;
    	sort(a + 1, a + n + 1, cmp), Len = a[n].v;
    	int ans = 1, pos = 0, pre, cur;
    	for(RE int i = 1; i <= n; i++)
    	{
    		f[i] = 1, pre = 0;
    		for(RE int j = 30; j >= 0; j--)
    		{
    			if ((m >> j) & 1){if (!((a[i].v >> j) & 1)) pre |= (1 << j);}
    			else{
    				if ((a[i].v >> j) & 1)
    				{
    					cur = Query(rt, 0, Len, pre, pre + (1 << j) - 1), pre |= (1 << j);
    					if (f[cur] + 1 > f[i]) f[i] = f[cur] + 1, g[i] = cur;
    				}
    				else{
    					cur = Query(rt, 0, Len, pre + (1 << j), (LL)pre + (1LL << j + 1) - 1);
    					if (f[cur] + 1 > f[i]) f[i] = f[cur] + 1, g[i] = cur;
    				}
    			}
    			if (!j)
    			{
    				cur = Query(rt, 0, Len, pre, pre);
    				if (f[cur] + 1 > f[i]) f[i] = f[cur] + 1, g[i] = cur;
    			}
    		}
    		if (ans < f[i]) ans = f[i], pos = i;
    		if (i < n) Modify(rt, 0, Len, a[i].v, i);
    	}
    	printf("%d\n", (ans == 1) ? -1 : ans);
    	if (ans > 1) while (pos) printf("%d ", a[pos].id), pos = g[pos];
    }
    
  • 相关阅读:
    CF1270H
    CF1305G
    LeetCode-Sqrt(x)
    LeetCode-Plus One
    LeetCode-Integer to Roman
    LeetCode-Roman to Integer
    LeetCode-String to Integer (atoi)
    LeetCode-Reverse Integer
    C++
    LeetCode-Gray Code
  • 原文地址:https://www.cnblogs.com/leiyuanze/p/15800400.html
Copyright © 2011-2022 走看看