zoukankan      html  css  js  c++  java
  • HDU5983Pocket Cube

    Pocket Cube

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 19    Accepted Submission(s): 8


    Problem Description
    The Pocket Cube, also known as the Mini Cube or the Ice Cube, is the 2 × 2 × 2 equivalence of a Rubik’s Cube.
    The cube consists of 8 pieces, all corners.
    Each piece is labeled by a three dimensional coordinate (h, k, l) where h, k, l ∈ {0, 1}. Each of the six faces owns four small faces filled with a positive integer.
    For each step, you can choose a certain face and turn the face ninety degrees clockwise or counterclockwise.
    You should judge that if one can restore the pocket cube in one step. We say a pocket cube has been restored if each face owns four same integers.
     

    Input
    The first line of input contains one integer N(N ≤ 30) which is the number of test cases.
    For each test case, the first line describes the top face of the pocket cube, which is the common 2 × 2 face of pieces
    labelled by (0, 0, 1),(0, 1, 1),(1, 0, 1),(1, 1, 1). Four integers are given corresponding to the above pieces.
    The second line describes the front face, the common face of (1, 0, 1),(1, 1, 1),(1, 0, 0),(1, 1, 0). Four integers are
    given corresponding to the above pieces.
    The third line describes the bottom face, the common face of (1, 0, 0),(1, 1, 0),(0, 0, 0),(0, 1, 0). Four integers are
    given corresponding to the above pieces.
    The fourth line describes the back face, the common face of (0, 0, 0),(0, 1, 0),(0, 0, 1),(0, 1, 1). Four integers are
    given corresponding to the above pieces.
    The fifth line describes the left face, the common face of (0, 0, 0),(0, 0, 1),(1, 0, 0),(1, 0, 1). Four integers are given
    corresponding to the above pieces.
    The six line describes the right face, the common face of (0, 1, 1),(0, 1, 0),(1, 1, 1),(1, 1, 0). Four integers are given
    corresponding to the above pieces.
    In other words, each test case contains 24 integers a, b, c to x. You can flat the surface to get the surface development
    as follows.
    + - + - + - + - + - + - +
    | q | r | a | b | u | v |
    + - + - + - + - + - + - +
    | s | t | c | d | w | x |
    + - + - + - + - + - + - +
            | e | f |
            + - + - +
            | g | h |
            + - + - +
            | i | j |
            + - + - +
            | k | l |
            + - + - +
            | m | n |
            + - + - +
            | o | p |
            + - + - +
    
     

    Output
    For each test case, output YES if can be restored in one step, otherwise output NO.
     

    Sample Input
    4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 4 4 4 4 1 4 1 4 2 1 2 1 3 2 3 2 4 3 4 3 5 5 5 5 6 6 6 6 1 3 1 3 2 4 2 4 3 1 3 1 4 2 4 2 5 5 5 5 6 6 6 6
     

    Sample Output
    YES YES YES NO
     

    解题思路:
    自己叠了一个简易的立方体,就能看出魔方的每个面坐标变换的规则,直接模拟的,暂时没有什么好的方法。QAQ

    源代码:
    #include<iostream>
    #include<string>
    #include<set>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    int ans[9][9];
    void readdata() {
        memset(ans,-1,sizeof(ans));
        for(int i=1;i<=8;i++)
            for(int j=3;j<=4;j++)
                scanf("%d",&ans[i][j]);
        for(int i=1;i<=2;i++)
            for(int j=1;j<=2;j++)
                scanf("%d",&ans[i][j]);
        for(int i=1;i<=2;i++)
            for(int j=5;j<=6;j++)
                scanf("%d",&ans[i][j]);
    }
    /*是否已经是还原成功的模样*/
    int check(int c[9][9]) {
        int i,j;
        i=1,j=3;if(c[i][j]!=c[i][j+1]||c[i][j]!=c[i+1][j]||c[i][j]!=c[i+1][j+1])return 0;
        i=3,j=3;if(c[i][j]!=c[i][j+1]||c[i][j]!=c[i+1][j]||c[i][j]!=c[i+1][j+1])return 0;
        i=5,j=3;if(c[i][j]!=c[i][j+1]||c[i][j]!=c[i+1][j]||c[i][j]!=c[i+1][j+1])return 0;
        i=7,j=3;if(c[i][j]!=c[i][j+1]||c[i][j]!=c[i+1][j]||c[i][j]!=c[i+1][j+1])return 0;
        i=1,j=1;if(c[i][j]!=c[i][j+1]||c[i][j]!=c[i+1][j]||c[i][j]!=c[i+1][j+1])return 0;
        i=1,j=5;if(c[i][j]!=c[i][j+1]||c[i][j]!=c[i+1][j]||c[i][j]!=c[i+1][j+1])return 0;
        return 1;
    }
    /*总共出现的数字超过了6个*/
    int cnt() {
        set<int> s;s.clear();
        for(int i=1;i<=8;i++)
            for(int j=3;j<=4;j++)
                s.insert(ans[i][j]);
        for(int i=1;i<=2;i++)
            for(int j=1;j<=2;j++)
                s.insert(ans[i][j]);
        for(int i=1;i<=2;i++)
            for(int j=5;j<=6;j++)
                s.insert(ans[i][j]);
        return s.size();
    }
    /*检查竖列的两个方向*/
    int linecheck() {
        int sum=0;
        int bns[9][9];
        for(int i=1;i<=8;i++)
            for(int j=1;j<=8;j++)
                bns[i][j]=ans[i][j];
        int temp1,temp2;
        /*up*/
        temp1=bns[1][3];
        temp2=bns[2][3];
        for(int i=1;i<=6;i++) {
            bns[i][3]=bns[i+2][3];
        }
        bns[7][3]=temp1;
        bns[8][3]=temp2;
        if(check(bns)) sum+=1;
        /*down*/
        for(int i=1;i<=8;i++)
            for(int j=1;j<=8;j++)
                bns[i][j]=ans[i][j];
        temp1=bns[7][3];
        temp2=bns[8][3];
        for(int i=8;i>=3;i--) {
            bns[i][3]=bns[i-2][3];
        }
        bns[1][3]=temp1;
        bns[2][3]=temp2;
        if(check(bns)) sum+=1;
        return sum;
    }
    /*检查横向的两个方向*/
    int rowcheck() {
        int sum=0;
        int bns[9][9];
        for(int i=1;i<=8;i++)
            for(int j=1;j<=8;j++)
                bns[i][j]=ans[i][j];
        int temp1,temp2;
        /*right*/
        temp1=bns[6][3];
        temp2=bns[6][4];
        bns[6][3]=bns[1][6];
        bns[6][4]=bns[1][5];
        for(int i=6;i>=3;i--)
            bns[1][i]=bns[1][i-2];
        bns[1][1]=temp2;
        bns[1][2]=temp1;
        if(check(bns)) sum+=1;
        /*left*/
        for(int i=1;i<=8;i++)
            for(int j=1;j<=8;j++)
                bns[i][j]=ans[i][j];
        temp1=bns[6][3];
        temp2=bns[6][4];
        bns[6][3]=bns[1][2];
        bns[6][4]=bns[1][1];
        for(int i=1;i<=4;i++)
            bns[1][i]=bns[1][i+2];
        bns[1][5]=temp2;
        bns[1][6]=temp1;
        if(check(bns)) sum+=1;
        return sum;
    }
    int exdir() {
        int sum=0;
        int bns[9][9];
        for(int i=1;i<=8;i++)
            for(int j=1;j<=8;j++)
                bns[i][j]=ans[i][j];
        int temp1,temp2;
        /*dir-left*/
        temp1=bns[8][3];
        temp2=bns[8][4];
        bns[8][3]=bns[1][5];bns[8][4]=bns[2][5];
        bns[1][5]=bns[3][4];bns[2][5]=bns[3][3];
        bns[3][3]=bns[1][2];bns[3][4]=bns[2][2];
        bns[1][2]=temp2;bns[2][2]=temp1;
        if(check(bns)) sum+=1;
        /*dir-right*/
        for(int i=1;i<=8;i++)
            for(int j=1;j<=8;j++)
                bns[i][j]=ans[i][j];
        temp1=bns[8][3];
        temp2=bns[8][4];
        bns[8][3]=bns[2][2];bns[8][4]=bns[1][2];
        bns[1][2]=bns[3][3];bns[2][2]=bns[3][4];
        bns[3][3]=bns[2][5];bns[3][4]=bns[1][5];
        bns[1][5]=temp1;bns[2][5]=temp2;
        if(check(bns)) sum+=1;
        return sum;
    }
    int main() {
        int t;scanf("%d",&t);
        while(t--) {
            int flag=0;
            readdata();
            /*总共出现的数字超过了6个*/
            if(cnt()!=6) {
                printf("NO
    ");continue;
            }
            /*是否已经是还原成功的模样*/
            if(check(ans)==1) {
                printf("YES
    ");continue;
            }
            /*检查竖列的两个方向*/
            if(linecheck()) {
                printf("YES
    ");continue;
            }
            /*检查横向的两个方向*/
            if(rowcheck()) {
                printf("YES
    ");continue;
            }
            /*ex-dir另外两个方向*/
            if(exdir()) {
                printf("YES
    ");continue;
            }
            /*上面所有情况都不符合*/
            if(!flag)
                printf("NO
    ");
        }
        return 0;
    }


  • 相关阅读:
    iOS MVC <模型-视图-控制器>
    iOS interface building 大纲视图内容
    循序渐进VUE+Element 前端应用开发(28)--- 附件内容的管理 (转载)
    循序渐进VUE+Element 前端应用开发(27)--- 数据表的动态表单设计和数据存储(转载)
    ABP框架中一对多,多对多关系的处理以及功能界面的处理(2)(转载)
    ABP框架中一对多,多对多关系的处理以及功能界面的处理(1)(转载)
    电商商品数据库的设计和功能界面的处理 (转载)
    循序渐进VUE+Element 前端应用开发(26)--- 各种界面组件的使用(2)(转载)
    循序渐进VUE+Element 前端应用开发(25)--- 各种界面组件的使用(1)(转载)
    循序渐进VUE+Element 前端应用开发(24)--- 修改密码的前端界面和ABP后端设置处理(转载)
  • 原文地址:https://www.cnblogs.com/lemonbiscuit/p/7776047.html
Copyright © 2011-2022 走看看