zoukankan      html  css  js  c++  java
  • MapReduce编程实例

     MapReduce常见编程实例集锦。

    1. WordCount单词统计
    2. 数据去重
    3. 倒排索引

    1. WordCount单词统计

    (1) 输入输出

    输入数据:

    file1.csv内容
    hellod world
    file2.csv内容
    hellod hadoop

    输出结果:

    hadoop    1
    hello    2
    world    1

    (2) 代码实现及分析

    package com.hadoop.kwang;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class WordCount {
    
        /**
         * Mapper类
         * 
         * Object和Text是输入数据的<key,value>类型
         * Text和IntWritable是输出数据的<key,value>类型
         */
        public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
    
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
                
                //读取一行的文本,并进行分割
                StringTokenizer itr = new StringTokenizer(value.toString());
                
                //遍历读取并记录分割后的每一个单词
                while (itr.hasMoreTokens()) {
                    word.set(itr.nextToken());
                    
                    //输出的<key,value>形式都是:<"word",1>
                    context.write(word, one);    
                }
            }
        }
    
        /**
         * Reducer类
         *
         */
        public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
    
            public void reduce(Text key, Iterable<IntWritable> values, Context context)
                    throws IOException, InterruptedException {
                //统计单词次数
                int sum = 0; 
                
                //values是某个key对应的value的集合,即<key,value-list>,比如<hello, <1,1>>,values是值的集合
                for (IntWritable val : values) {
                    //对所有value进行累加
                    sum += val.get();        
                }
                result.set(sum);
                context.write(key, result);
            }
        }
    
        public static void main(String[] args) throws Exception {
            
            Configuration conf = new Configuration();
    
            //配置输入输出路径
            String input = "hdfs://0.0.0.0:xxx/hadoop/wordcount/input/";
            String output = "hdfs://0.0.0.0:xxx/hadoop/wordcount/output/";
    
            Job job = new Job(conf, "word count");
            job.setJarByClass(WordCount.class);
            job.setMapperClass(TokenizerMapper.class);        //为job设置Mapper类
            job.setCombinerClass(IntSumReducer.class);        //为job设置Conbiner类
            job.setReducerClass(IntSumReducer.class);        //为job设置Reducer类
            
            job.setOutputKeyClass(Text.class);                //设置输出key类型
            job.setOutputValueClass(IntWritable.class);        //设置输出value类型
    
            FileInputFormat.addInputPath(job, new Path(input));        //设置数据输入路径
            FileOutputFormat.setOutputPath(job, new Path(output));    //设置数据输出路径
    
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    View Code

     2. 数据去重

    (1) 输入输出

    输入数据:

    file1.csv内容
    2017-12-09 a
    2017-12-10 a
    2017-12-11 a
    2017-12-12 b
    2017-12-13 b
    file2.csv内容
    2017-12-09 b
    2017-12-10 b
    2017-12-11 b
    2017-12-12 b
    2017-12-13 b

    输出结果:

    2017-12-09 a
    2017-12-09 b
    2017-12-10 a
    2017-12-10 b
    2017-12-11 a
    2017-12-11 b
    2017-12-12 b
    2017-12-13 b 

    (2) 代码实现及分析

    import java.io.IOException;
    import java.net.URI;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    
    public class DedupClean {
        
        /*
         * Mapper类
         */
        public static class DedupCleanMapper extends Mapper<LongWritable, Text, Text, Text> {
            
            private static Text line = new Text();
            private static Text nullString = new Text("");
            
            @Override
            protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                    throws IOException, InterruptedException {
                //直接读取一行的数据作为key
                line = value;
                
                //写入key和value
                context.write(line, nullString);
            }
        }
        
        
        /*
         * Recuder类
         */
        public static class DedupCleanReducer extends Reducer<Text, Text, Text, Text> {
            
            @Override
            protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
                    throws IOException, InterruptedException {
                //写入key和空value,重复的key覆盖
                context.write(key, new Text(""));
            }
        }
        
        public static void main(String[] args) throws Exception {
            
            final String FILE_IN_PATH = "hdfs://0.0.0.0:XXX/hadoop/dedupclean/input/";
            final String FILE_OUT_PATH = "hdfs://0.0.0.0:XXX/hadoop/dedupclean/ouput/";
            
            Configuration conf = new Configuration();
            
            //删除已经存在的输出目录
            FileSystem fs = FileSystem.get(new URI(FILE_OUT_PATH), conf);
            if (fs.exists(new Path(FILE_OUT_PATH))) {
                fs.delete(new Path(FILE_OUT_PATH), true);
            }
            
            Job job = Job.getInstance(conf, "DedupClean");
            job.setJarByClass(DedupClean.class);
            job.setMapperClass(DedupCleanMapper.class);
            job.setReducerClass(DedupCleanReducer.class);
            
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            
            FileInputFormat.addInputPath(job, new Path(FILE_IN_PATH));
            FileOutputFormat.setOutputPath(job, new Path(FILE_OUT_PATH));
            
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    View Code

    3. 倒排索引

    (1) 介绍

    文档是由许多的单词组成的,其中每个单词也可以在同一个文档中重复出现多次,当然,同一个单词也可以在不同的文档中。

     

    正排索引(forward index):从文档角度看其中的单词,标识每个文档(用文档ID标识)都含有哪些单词,以及每个单词出现了多少次(词频)及出现的位置(相对于文档首部的偏移量)。

    倒排索引(inverted index):从单词角度看文档,标识每个单词分别在哪些文档中出现(文档ID),以及在各自的文档中每个单词分别出现了多少次(词频)及其出现的位置(相对于该文档首部的偏移量)。

     

    简单记为:

    正排索引:文档 ——> 单词

    倒排索引:单词 ——> 文档

     

    应用场景:比如搜索引擎、大规模数据库索引、文档检索、信息检索领域等,总之,倒排索引在检索领域是很重要的一种索引机制。

    (2) 输入输出及原理图

    输入数据:

    a.txt内容
    hello you hello
    b.txt内容
    hello hans

    输出结构:

    hans    b.txt:1
    hello    b.txt:1;a.txt:2
    you    a.txt:1

    具体的原理实现示意图如下图所示:

    (3) 代码实现及分析

    import java.io.IOException;
    import java.net.URI;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.FileSplit;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class InvertedIndex {
    
        /*
         * Mapper类
         * 
         *     输出<word:filename, value>格式,如<hello:a.txt, 1>
         *                                   <hello:a.txt, 1>
         *                                   <hello:b.txt, 1>
         */
        public static class InvertedIndexMapper extends Mapper<LongWritable, Text, Text, Text> {
    
            @Override
            protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)
                    throws IOException, InterruptedException {
    
                //获取文件名
                //文件路径:hdfs://10.20.14.47:8020/hadoop/invertedindex/input/a.txt (split.getPath()方法)
                FileSplit split = (FileSplit)context.getInputSplit();
                //fileName:a.txt
                String fileName = StringUtil.getShortPath(split.getPath().toString());
    
                //以<word:filename, value>形式存储 (便于Combiner中统计统一文件中相同单词数量)
                StringTokenizer st = new StringTokenizer(value.toString());
                while(st.hasMoreTokens()) {
                    String word = st.nextToken().toLowerCase();
                    word = word + ":" + fileName;
                    context.write(new Text(word), new Text("1"));
                }
            }
        }
    
        /*
         * Conbiner类
         * 
         *     输入<word:filename, value>格式,如<hello:a.txt, 1>
         *                                   <hello:a.txt, 1>
         *                                   <hello:b.txt, 1>
         * 
         *     输出<word, filename:values>格式,如<hello, a.txt:2>
         *                                    <hello, b.txt:1>
         */
        public static class InvertedIndexCombiner extends Reducer<Text, Text, Text, Text> {
            @Override
            protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
                    throws IOException, InterruptedException {
                
                long sum = 0;
                //统计同一个单词在同一个文件中的次数
                for(Text val : values) {
                    sum += Integer.valueOf(val.toString());
                }
                
                //将key(hello:a.txt) 分割为newKey(hello)和fileKey(a.txt)
                String newKey = StringUtil.getSplitByIndex(key.toString(), ":", 0);
                String fileKey = StringUtil.getSplitByIndex(key.toString(), ":", 1);
                
                context.write(new Text(newKey), new Text(fileKey + ":" + String.valueOf(sum)));
            }
        }
    
        /*
         * Recuder类
         * 
         *     输入<word, filename:values>格式,如<hello, a.txt:2>
         *                                    <hello, b.txt:1>
         * 
         *     输出<word, filename1:values;filename2:values>格式,如<hello, a.txt:2;b.txt:1>
         */
        public static class InvertedIndexReducer extends Reducer<Text, Text, Text, Text> {
    
            @Override
            protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)
                    throws IOException, InterruptedException {
                
                StringBuilder sb = new StringBuilder();
                
                //聚合同一单词出现在的文件及出现次数
                for(Text val : values) {
                    sb.append(val.toString() + ";");
                }
                context.write(key, new Text(sb.toString()));
    
            }
        }
        
        //指定输入输出路径
        private static final String FILE_IN_PATH  = "hdfs://0.0.0.0:xxx/hadoop/invertedindex/input";
        private static final String FILE_OUT_PATH = "hdfs://0.0.0.0:xxx/hadoop/invertedindex/output"; 
        
        public static void main(String[] args) throws Exception {
            
            Configuration conf = new Configuration();
            
            //删除已经存在的输出路径
            FileSystem fs = FileSystem.get(new URI(FILE_OUT_PATH), conf);
            if (fs.exists(new Path(FILE_OUT_PATH))) {
                fs.delete(new Path(FILE_OUT_PATH), true);
            }
            
            Job job = Job.getInstance(conf, "InvertedIndex");
            job.setJarByClass(InvertedIndex.class);
            job.setMapperClass(InvertedIndexMapper.class);
            job.setCombinerClass(InvertedIndexCombiner.class);
            job.setReducerClass(InvertedIndexReducer.class);
            
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            
            FileInputFormat.addInputPath(job, new Path(FILE_IN_PATH));
            FileOutputFormat.setOutputPath(job, new Path(FILE_OUT_PATH));
            
            System.exit(job.waitForCompletion(true) ? 0 : 1);
            
        }
    }
    
    /*
     * 工具类
     *     获取文件路径
     */
    class StringUtil {
        
        /*
         * 获取文件路径名
         */
        public static String getShortPath(String filePath) {
            if (filePath.length() == 0) {
                return filePath;
            }
            return filePath.substring(filePath.lastIndexOf("/") + 1);
        }
        
        /*
         * 根据regex分割str,并返回index位置的值
         */
        public static String getSplitByIndex(String str, String regex, int index) {
            String[] splits = str.split(regex);
            if (splits.length < index) {
                return "";
            }
            return splits[index];
        }
    }
    View Code
  • 相关阅读:
    5、面试题-测试用例篇
    4、面试题-技术篇
    3、面试题-测试流程
    2、面试题-接口测试用例
    全屏圆角弹出框
    Jquery的each退出循环
    拖动DIV
    head里面的其他标记
    更新字段
    Python---序列化
  • 原文地址:https://www.cnblogs.com/lemonu/p/9669631.html
Copyright © 2011-2022 走看看