zoukankan      html  css  js  c++  java
  • How to compute dPdu, dPdv for triangles

    For triangles, as well as other planar shapes, there's an affine mapping from parametric space to object space, said M.

    In parametric space, we know the parametric coordiantes for 3 triangle corners are (u0, v0), (u1, v1), (u2, v2) respectively.

    While in object space, the 3D coordinates for 3 triangle corners are P0, P1, P2.

    So with the mapping M, we can transform the difference vectors (du1, dv1) = (u1 - u0, v1 - v0), and (du2, dv2) = (u2 - u0, v2 - v0) to the difference vectors in object space, said dP1 = P1 - P0, dP2 = P2 - P0, dP1, dP2 are 3D vectors.

    The equation looks like:

    (dP1)    (du1 dv1)

    |     | = |           | * M

    (dP2)    (du2 dv2)

    Assume M = (K1, K2), K1, K2 are 3D vectors, the equation can be rewritten with:

    (dP1)    (du1 dv1)   (K1)

    |     | = |           | * |   |       (1)

    (dP2)    (du2 dv2)   (K2)

    Solve K1, K2, we get:

    (K1)         (du1 dv1)   (dP1)

    |    | = INV|           | * |    |

    (K2)         (du2 dv2)   (dP2)

    Now we need to understand what are K1, K2, using equation (1) we have:

    dPdu * du = (du 0) * (K1) = K1 * du, thus we know dPdu = K1

                                   (K2)

    Similarly,

    dPdv * dv = (0 dv) * (K1) = K1 * dv, thus we know dPdv = K2

                                   (K2)

    Finally we got:

    (dPdu)         (du1 dv1)   (dP1)

    |       | = INV|           | * |    |

    (dPdv)         (du2 dv2)   (dP2)

    Which satisfies:

    P(u + du, v) = P(u, v) + dPdu * du

    P(u, v + dv) = P(u, v) + dPdv * dv

  • 相关阅读:
    剑指offer:二分查找找到旋转数组中的最小值
    强制索引
    剑指offer:青蛙跳台阶
    剑指offer:求和
    序列化和反序列化
    装饰器、生成器
    Python函数(一)
    【转】C# 中的委托和事件
    【读书笔记】备忘录模式翻译成C++了
    【学习笔记】Android 调试桥
  • 原文地址:https://www.cnblogs.com/len3d/p/2172528.html
Copyright © 2011-2022 走看看