zoukankan      html  css  js  c++  java
  • How to compute dPdu, dPdv for triangles

    For triangles, as well as other planar shapes, there's an affine mapping from parametric space to object space, said M.

    In parametric space, we know the parametric coordiantes for 3 triangle corners are (u0, v0), (u1, v1), (u2, v2) respectively.

    While in object space, the 3D coordinates for 3 triangle corners are P0, P1, P2.

    So with the mapping M, we can transform the difference vectors (du1, dv1) = (u1 - u0, v1 - v0), and (du2, dv2) = (u2 - u0, v2 - v0) to the difference vectors in object space, said dP1 = P1 - P0, dP2 = P2 - P0, dP1, dP2 are 3D vectors.

    The equation looks like:

    (dP1)    (du1 dv1)

    |     | = |           | * M

    (dP2)    (du2 dv2)

    Assume M = (K1, K2), K1, K2 are 3D vectors, the equation can be rewritten with:

    (dP1)    (du1 dv1)   (K1)

    |     | = |           | * |   |       (1)

    (dP2)    (du2 dv2)   (K2)

    Solve K1, K2, we get:

    (K1)         (du1 dv1)   (dP1)

    |    | = INV|           | * |    |

    (K2)         (du2 dv2)   (dP2)

    Now we need to understand what are K1, K2, using equation (1) we have:

    dPdu * du = (du 0) * (K1) = K1 * du, thus we know dPdu = K1

                                   (K2)

    Similarly,

    dPdv * dv = (0 dv) * (K1) = K1 * dv, thus we know dPdv = K2

                                   (K2)

    Finally we got:

    (dPdu)         (du1 dv1)   (dP1)

    |       | = INV|           | * |    |

    (dPdv)         (du2 dv2)   (dP2)

    Which satisfies:

    P(u + du, v) = P(u, v) + dPdu * du

    P(u, v + dv) = P(u, v) + dPdv * dv

  • 相关阅读:
    【转】C++多继承的细节
    【转】CVE-2010-4258 漏洞分析
    【转】cve-2013-2094 perf_event_open 漏洞分析
    android CVE 漏洞汇总
    ExecutorService中submit和execute的区别
    线程池之ThreadPoolExecutor使用
    postman接口自动化,环境变量的用法详解(附postman常用的方法)转
    件测试专家分享III GUI自动化测试相关
    Linux上运行Jmeter
    时间复杂度和空间复杂度计算
  • 原文地址:https://www.cnblogs.com/len3d/p/2172528.html
Copyright © 2011-2022 走看看