zoukankan      html  css  js  c++  java
  • How to compute dPdu, dPdv for triangles

    For triangles, as well as other planar shapes, there's an affine mapping from parametric space to object space, said M.

    In parametric space, we know the parametric coordiantes for 3 triangle corners are (u0, v0), (u1, v1), (u2, v2) respectively.

    While in object space, the 3D coordinates for 3 triangle corners are P0, P1, P2.

    So with the mapping M, we can transform the difference vectors (du1, dv1) = (u1 - u0, v1 - v0), and (du2, dv2) = (u2 - u0, v2 - v0) to the difference vectors in object space, said dP1 = P1 - P0, dP2 = P2 - P0, dP1, dP2 are 3D vectors.

    The equation looks like:

    (dP1)    (du1 dv1)

    |     | = |           | * M

    (dP2)    (du2 dv2)

    Assume M = (K1, K2), K1, K2 are 3D vectors, the equation can be rewritten with:

    (dP1)    (du1 dv1)   (K1)

    |     | = |           | * |   |       (1)

    (dP2)    (du2 dv2)   (K2)

    Solve K1, K2, we get:

    (K1)         (du1 dv1)   (dP1)

    |    | = INV|           | * |    |

    (K2)         (du2 dv2)   (dP2)

    Now we need to understand what are K1, K2, using equation (1) we have:

    dPdu * du = (du 0) * (K1) = K1 * du, thus we know dPdu = K1

                                   (K2)

    Similarly,

    dPdv * dv = (0 dv) * (K1) = K1 * dv, thus we know dPdv = K2

                                   (K2)

    Finally we got:

    (dPdu)         (du1 dv1)   (dP1)

    |       | = INV|           | * |    |

    (dPdv)         (du2 dv2)   (dP2)

    Which satisfies:

    P(u + du, v) = P(u, v) + dPdu * du

    P(u, v + dv) = P(u, v) + dPdv * dv

  • 相关阅读:
    装箱、拆箱操作发生在
    @Data的注解使用以及在IDEA上安装
    Mysql中 BLOB字段转String的方法
    不属于java语言鲁棒性特点的是
    java object默认的基本方法
    哪个类可用于处理 Unicode?
    类和接口的继承
    抽象类的叙述:
    Hashtable 和 HashMap 的区别是:
    编程之美初赛第一场--焦距
  • 原文地址:https://www.cnblogs.com/len3d/p/2172528.html
Copyright © 2011-2022 走看看