zoukankan      html  css  js  c++  java
  • Constructing Roads(HDU 1102 最小生成树)

    Description

    There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected.

    We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.

    Input

    The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

    Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.

    Output

    You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum.

    Sample Input

    3
    0 990 692
    990 0 179
    692 179 0
    1
    1 2
    

    Sample Output

    179

    Hint


    Prim算法

    #include<iostream>
    using namespace std;
    int n,p[105][105],x,y,vis[105],i,j;
    int main()


    {while (scanf("%d", &n) != EOF)
    {for(i=1;i<=n;i++)
    for(j=1;j<=n;j++)
    cin>>p[i][j];
    int n1;
    cin>>n1;
    for(i=1;i<=n1;i++)
    {cin>>x>>y;
    p[x][y]=0;p[y][x]=0;
    }


    memset(vis,0,sizeof(vis));
    vis[1]=1;
    int sum=0;
    for(i=0;i<n-1;i++)
    {int  max=1000;
    for(j=1;j<=n;j++)
    {if(!vis[j]&&p[1][j]<max)
    {max=p[1][j];
    x=j;}
    }
    vis[x]=1;
    sum+=max;
    for(j=1;j<=n;j++)
    {if(!vis[j]&&p[1][j]>p[x][j])
    p[1][j]=p[x][j];

    }
    }

    cout<<sum<<endl;

    }
    return 0;}







    Kruskal算法


    #include<stdio.h>
    #include<string.h>
    #include<stdlib.h>
    struct stu
    {
     int p;
     int q;
     int val;
    }c[10009];
    int set[109];
    void Make_set(int n)
    {
     int i;
     for(i=0;i<n;i++)
      set[i]=i;
    }
    int Found_set(int a)
    {
     int i,r=a;
     while(set[r]!=r)
      r=set[r];
     while(a!=r)
     {
      i=set[a];
      set[a]=r;
      a=i;
     }
     return a;
    }
    void Union(int a,int b)
    {
     set[a]=b;
    }
    int cmp(const void *a,const void *b)
    {
     struct stu *c,*d;
     c=(struct stu *)a;
     d=(struct stu *)b;
     return c->val-d->val;
    }
    int main()
    {
     int i,j,str[101][101],n,m,x,y,k,fx,fy,sum;
     while(scanf("%d",&n)!=EOF)
     {
      for(i=0;i<n;i++)
       for(j=0;j<n;j++)
        scanf("%d",&str[i][j]);
       scanf("%d",&m);
       for(i=0;i<m;i++)
       {
        scanf("%d %d",&x,&y);
        x--;y--;
        str[x][y]=0;
        str[y][x]=0; 
       }
       k=0;
       for(i=0;i<n;i++)
        for(j=0;j<n;j++)
        {
         c[k].p=i;
         c[k].q=j;
         c[k].val=str[i][j];
         k++;
        }
        qsort(c,k,sizeof(c[0]),cmp);
        sum=0;
        Make_set(n);
        for(i=0;i<k;i++)
        {
         fx=Found_set(c[i].p);
         fy=Found_set(c[i].q);
         if(fx!=fy)
         {
          Union(fx,fy);
          sum+=c[i].val;
         }
        }
        printf("%d ",sum);
     }
     return 0;
    }
  • 相关阅读:
    通过静态广播监听网络变化,在通过回调通知
    支付宝九宫格
    toolBar
    QQ发送位置(高德地图)
    聊天消息 左右item
    Scrollview 嵌套 RecyclerView 及在Android 5.1版本滑动时 惯性消失问题
    判断软键盘是否弹出 并且隐藏
    Solve Longest Path Problem in linear time
    Why longest path problem doesn't have optimal substructure?
    [leetcode] Reorder List
  • 原文地址:https://www.cnblogs.com/lengxia/p/4387801.html
Copyright © 2011-2022 走看看