zoukankan      html  css  js  c++  java
  • Sum of Consecutive Prime Numbers

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2
    
    
    
    
    #include <iostream>
    #include <stdlib.h>
    using namespace std;
    int main()
    {int a[10000],i,j,k;
    bool l=0;
    a[0]=0;
    a[1]=2;
    k=2;
    for(i=3;i<10000;i++)
    {l=0;
    	for(j=2;j<i;j++)
    {if(i%j==0)
    {l=1;break;}
    }
    if(l==0)
    {a[k]=i;
    k++;}
    
    }
    	
    	
    	int n,count,sum;
    while(cin>>n&&n!=0)
    {count=0;
    for(i=1;i<10000;i++)
    {sum=a[i];
    for(j=i+1;j<10000;j++)
    {sum=sum+a[j];
    if(sum==n)
    {count++;break;}
    else if(sum>n)
    break;
    
    }
    if(a[i]==n)
    count++;
    if(a[i]>n)
    break;
    }
    
    
    
    
    
    cout<<count<<endl;
    
    }
    
    
    return 0;}

  • 相关阅读:
    Python之pytest 基础
    unittest和pytest的区别
    Selenium 常用定位对象元素的方法
    ORCAl存储过程
    Mysql的存储过程
    TestNG 搭建测试框架 自动化测试
    通过junit/TestNG+java 实现自动化测试
    查看APP用到的图片方法
    码农干私活的建议(转)
    Android的onCreateOptionsMenu()创建菜单Menu详解(转)
  • 原文地址:https://www.cnblogs.com/lengxia/p/4387856.html
Copyright © 2011-2022 走看看