zoukankan      html  css  js  c++  java
  • Sum of Consecutive Prime Numbers

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2
    
    
    
    
    #include <iostream>
    #include <stdlib.h>
    using namespace std;
    int main()
    {int a[10000],i,j,k;
    bool l=0;
    a[0]=0;
    a[1]=2;
    k=2;
    for(i=3;i<10000;i++)
    {l=0;
    	for(j=2;j<i;j++)
    {if(i%j==0)
    {l=1;break;}
    }
    if(l==0)
    {a[k]=i;
    k++;}
    
    }
    	
    	
    	int n,count,sum;
    while(cin>>n&&n!=0)
    {count=0;
    for(i=1;i<10000;i++)
    {sum=a[i];
    for(j=i+1;j<10000;j++)
    {sum=sum+a[j];
    if(sum==n)
    {count++;break;}
    else if(sum>n)
    break;
    
    }
    if(a[i]==n)
    count++;
    if(a[i]>n)
    break;
    }
    
    
    
    
    
    cout<<count<<endl;
    
    }
    
    
    return 0;}

  • 相关阅读:
    求长度的另一种方法(""+obj).Length
    XCode中如何使用事务
    最终版 Reflector v1.0 (+简单的反流程混淆)
    与ObjectDataSource共舞
    性能&分布式&NewLife.XCode对无限数据的支持
    XCode之第一次亲密接触
    5,ORM组件XCode(动手)
    你知道吗?多个类多线程环境下静态构造函数的执行顺序
    使用C#编写IDA插件 IDACSharp v1.0.2010.0605
    XCMS V1.0 Beta1 发布
  • 原文地址:https://www.cnblogs.com/lengxia/p/4387856.html
Copyright © 2011-2022 走看看