zoukankan      html  css  js  c++  java
  • (赛码"BestCoder"杯中国大学生程序设计冠军赛)GCD

    GCD

     
     Accepts: 433
     
     Submissions: 1753
     Time Limit: 2000/1000 MS (Java/Others)
     
     Memory Limit: 131072/131072 K (Java/Others)
    Problem Description

    In mathematics, the greatest common divisor (gcd) of two or more integers, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4.---Wikipedia

    BrotherK and Ery like playing mathematic games. Today, they are playing a game with GCD.

    BrotherK has an array A with N elements: A1 ~ AN, each element is a integer in [1, 10^9]. Ery has Q questions, the i-th question is to calculate GCD(ALi, ALi+1, ALi+2, ..., ARi), and BrotherK will tell her the answer.

    BrotherK feels tired after he has answered Q questions, so Ery can only play with herself, but she don't know any elements in array A. Fortunately, Ery remembered all her questions and BrotherK's answer, now she wants to recovery the array A.

    Input

    The first line contains a single integer T, indicating the number of test cases.

    Each test case begins with two integers N, Q, indicating the number of array A, and the number of Ery's questions. Following Q lines, each line contains three integers Li, Ri and Ansi, describing the question and BrotherK's answer.

    T is about 10

    2  N Q  1000

    1  Li < Ri  N

    1  Ansi  109

    Output

    For each test, print one line.

    If Ery can't find any array satisfy all her question and BrotherK's answer, print "Stupid BrotherK!" (without quotation marks). Otherwise, print N integer, i-th integer is Ai.

    If there are many solutions, you should print the one with minimal sum of elements. If there are still many solutions, print any of them.

    Sample Input
    2
    2 2
    1 2 1
    1 2 2
    2 1
    1 2 2
    Sample Output
    Stupid BrotherK!
    2 2

    #include <iostream>
    #include<cstring>
    using namespace std;
    long long  v[1005],a[1005][3];

    long long mm(long long  m,long long  n)
    {
      long long  a,b,c;

            if( n > m) {
                a = n ;
                b = m ;
            }
            else {
                a = m ; b = n;
            }
            while ( b != 0 ) {  /* 最小公倍数 = m*n/GCD(m,n) */
                c = a % b ;
                a = b ;
                b = c ;
            }
        return a ;

    }
    long long  ma(long long  m,long long n){
        if(m==0)return n;
        else
    return (m*n)/mm(m,n);
    }
    long long  gcd(long long  x,long long y){
    long long  l=v[x];
    for(int i=x+1;i<=y;i++)
    l=mm(l,v[i]);

    return l;
    }
    int main(){
    int t;
    cin>>t;
    int n,m;
    long long x,y,z;
    while(t--)
    {bool p=1;
    memset(v,0,sizeof(v));
    memset(a,0,sizeof(a));
     cin>>n>>m;
     for(int i=0;i<m;i++)
     {
         cin>>x>>y>>z;
         a[i][0]=x;a[i][1]=y;
         a[i][2]=z;
         for(int k=x;k<=y;k++){
         v[k]=ma(v[k],z);
         }
     }
    int i;
    for(int i=0;i<m;i++)
        if(gcd(a[i][0],a[i][1])!=a[i][2]){
            p=0;break;
       }

    if(p==0)cout<<"Stupid BrotherK!";
    else
    {
    if(v[1]==0)cout<<1;
    else cout<<v[1];
    for(int i=2;i<=n;i++)

        if(v[i]==0)cout<<" "<<1;
    else cout<<" "<<v[i];
    }

    cout<<endl;
    }
    return 0;}

  • 相关阅读:
    操作系统 实验一 命令解释程序的编写
    软件工程 《构建之法》1、2、3章读后感
    软件工程实验一 复利计算 第四次实验
    软件工程实验一 复利计算(第三次实验实验总结)
    软件工程实验一 复利计算
    实验0 了解和熟悉操作系统
    团队工作总结及自评 & 补上来的用户调研
    四则运算安卓版ver.mk2
    安卓版四则运算
    每日更新
  • 原文地址:https://www.cnblogs.com/lengxia/p/4472249.html
Copyright © 2011-2022 走看看