zoukankan      html  css  js  c++  java
  • Lock和Condition在JDK中ArrayBlockingQueue的应用

    ArrayBlockingQueue的实现思路简单描述,ArrayBlockingQueue的底对于互斥访问使用的一个锁。细节参考源码take和put方法:

    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.locks.*;
    import java.util.*;
    
    public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, java.io.Serializable {
    
        /** The queued items */
        final Object[] items;//证明了java泛型是语法级别的泛型。
    
        /** items index for next take, poll, peek or remove */
        int takeIndex;
    
        /** items index for next put, offer, or add */
        int putIndex;
    
        // 可以使用一个int变量计数原因是:ArrayBlockingQueue的实现只有一把锁,对count访问时候都是在锁的保护机制下实现互斥的。
        /** Number of elements in the queue */
        int count;
    
        /*
         * Concurrency control uses the classic two-condition algorithm found in any
         * textbook.
         */
        // 使用一把锁
        /** Main lock guarding all access */
        final ReentrantLock lock;
    
        // 两个Condition对象
        /** Condition for waiting takes */
        private final Condition notEmpty;
        /** Condition for waiting puts */
        private final Condition notFull;
    
    
        /**
         * Circularly decrement i.
         */
        final int dec(int i) {
            return ((i == 0) ? items.length : i) - 1;
        }
    
        @SuppressWarnings("unchecked")
        static <E> E cast(Object item) {
            return (E) item;
        }
    
        /**
         * Returns item at index i.
         */
        final E itemAt(int i) {
            return this.<E>cast(items[i]);
        }
    
        /**
         * Throws NullPointerException if argument is null.
         *
         * @param v
         *            the element
         */
        private static void checkNotNull(Object v) {
            if (v == null)
                throw new NullPointerException();
        }
    
        /**
         * Deletes item at position i. Utility for remove and iterator.remove. Call
         * only when holding lock.
         */
        void removeAt(int i) {
            final Object[] items = this.items;
            // if removing front item, just advance
            if (i == takeIndex) {
                items[takeIndex] = null;
                takeIndex = inc(takeIndex);
            } else {
                // slide over all others up through putIndex.
                for (;;) {
                    int nexti = inc(i);
                    if (nexti != putIndex) {
                        items[i] = items[nexti];
                        i = nexti;
                    } else {
                        items[i] = null;
                        putIndex = i;
                        break;
                    }
                }
            }
            --count;
            notFull.signal();
        }
    
        /**
         * Creates an {@code ArrayBlockingQueue} with the given (fixed) capacity and
         * default access policy.
         *
         * @param capacity
         *            the capacity of this queue
         * @throws IllegalArgumentException
         *             if {@code capacity < 1}
         */
        public ArrayBlockingQueue(int capacity) {
            this(capacity, false);
        }
    
        /**
         * Creates an {@code ArrayBlockingQueue} with the given (fixed) capacity and
         * the specified access policy.
         *
         * @param capacity
         *            the capacity of this queue
         * @param fair
         *            if {@code true} then queue accesses for threads blocked on
         *            insertion or removal, are processed in FIFO order; if
         *            {@code false} the access order is unspecified.
         * @throws IllegalArgumentException
         *             if {@code capacity < 1}
         */
        public ArrayBlockingQueue(int capacity, boolean fair) {
            if (capacity <= 0)
                throw new IllegalArgumentException();
            this.items = new Object[capacity];
            lock = new ReentrantLock(fair);
            notEmpty = lock.newCondition();
            notFull = lock.newCondition();
        }
    
        /**
         * Creates an {@code ArrayBlockingQueue} with the given (fixed) capacity,
         * the specified access policy and initially containing the elements of the
         * given collection, added in traversal order of the collection's iterator.
         *
         * @param capacity
         *            the capacity of this queue
         * @param fair
         *            if {@code true} then queue accesses for threads blocked on
         *            insertion or removal, are processed in FIFO order; if
         *            {@code false} the access order is unspecified.
         * @param c
         *            the collection of elements to initially contain
         * @throws IllegalArgumentException
         *             if {@code capacity} is less than {@code c.size()}, or less
         *             than 1.
         * @throws NullPointerException
         *             if the specified collection or any of its elements are null
         */
        public ArrayBlockingQueue(int capacity, boolean fair, Collection<? extends E> c) {
            this(capacity, fair);
    
            final ReentrantLock lock = this.lock;
            lock.lock(); // Lock only for visibility, not mutual exclusion
            try {
                int i = 0;
                try {
                    for (E e : c) {
                        checkNotNull(e);
                        items[i++] = e;
                    }
                } catch (ArrayIndexOutOfBoundsException ex) {
                    throw new IllegalArgumentException();
                }
                count = i;
                putIndex = (i == capacity) ? 0 : i;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue if it is possible
         * to do so immediately without exceeding the queue's capacity, returning
         * {@code true} upon success and throwing an {@code IllegalStateException}
         * if this queue is full.
         *
         * @param e
         *            the element to add
         * @return {@code true} (as specified by {@link Collection#add})
         * @throws IllegalStateException
         *             if this queue is full
         * @throws NullPointerException
         *             if the specified element is null
         */
        public boolean add(E e) {
            return super.add(e);
        }
    
        /**
         * Inserts the specified element at the tail of this queue if it is possible
         * to do so immediately without exceeding the queue's capacity, returning
         * {@code true} upon success and {@code false} if this queue is full. This
         * method is generally preferable to method {@link #add}, which can fail to
         * insert an element only by throwing an exception.
         *
         * @throws NullPointerException
         *             if the specified element is null
         */
        public boolean offer(E e) {
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                if (count == items.length)
                    return false;
                else {
                    insert(e);
                    return true;
                }
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Inserts the specified element at the tail of this queue, waiting up to
         * the specified wait time for space to become available if the queue is
         * full.
         *
         * @throws InterruptedException
         *             {@inheritDoc}
         * @throws NullPointerException
         *             {@inheritDoc}
         */
        public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException {
    
            checkNotNull(e);
            long nanos = unit.toNanos(timeout);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == items.length) {
                    if (nanos <= 0)
                        return false;
                    nanos = notFull.awaitNanos(nanos);
                }
                insert(e);
                return true;
            } finally {
                lock.unlock();
            }
        }
    
        public E poll() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return (count == 0) ? null : extract();
            } finally {
                lock.unlock();
            }
        }
    
        public E poll(long timeout, TimeUnit unit) throws InterruptedException {
            long nanos = unit.toNanos(timeout);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                while (count == 0) {
                    if (nanos <= 0)
                        return null;
                    nanos = notEmpty.awaitNanos(nanos);
                }
                return extract();
            } finally {
                lock.unlock();
            }
        }
    
        public E peek() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return (count == 0) ? null : itemAt(takeIndex);
            } finally {
                lock.unlock();
            }
        }
    
        // this doc comment is overridden to remove the reference to collections
        // greater in size than Integer.MAX_VALUE
        /**
         * Returns the number of elements in this queue.
         *
         * @return the number of elements in this queue
         */
        public int size() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return count;
            } finally {
                lock.unlock();
            }
        }
    
        // this doc comment is a modified copy of the inherited doc comment,
        // without the reference to unlimited queues.
        /**
         * Returns the number of additional elements that this queue can ideally (in
         * the absence of memory or resource constraints) accept without blocking.
         * This is always equal to the initial capacity of this queue less the
         * current {@code size} of this queue.
         *
         * <p>
         * Note that you <em>cannot</em> always tell if an attempt to insert an
         * element will succeed by inspecting {@code remainingCapacity} because it
         * may be the case that another thread is about to insert or remove an
         * element.
         */
        public int remainingCapacity() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                return items.length - count;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Removes a single instance of the specified element from this queue, if it
         * is present. More formally, removes an element {@code e} such that
         * {@code o.equals(e)}, if this queue contains one or more such elements.
         * Returns {@code true} if this queue contained the specified element (or
         * equivalently, if this queue changed as a result of the call).
         *
         * <p>
         * Removal of interior elements in circular array based queues is an
         * intrinsically slow and disruptive operation, so should be undertaken only
         * in exceptional circumstances, ideally only when the queue is known not to
         * be accessible by other threads.
         *
         * @param o
         *            element to be removed from this queue, if present
         * @return {@code true} if this queue changed as a result of the call
         */
        public boolean remove(Object o) {
            if (o == null)
                return false;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--) {
                    if (o.equals(items[i])) {
                        removeAt(i);
                        return true;
                    }
                }
                return false;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns {@code true} if this queue contains the specified element. More
         * formally, returns {@code true} if and only if this queue contains at
         * least one element {@code e} such that {@code o.equals(e)}.
         *
         * @param o
         *            object to be checked for containment in this queue
         * @return {@code true} if this queue contains the specified element
         */
        public boolean contains(Object o) {
            if (o == null)
                return false;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
                    if (o.equals(items[i]))
                        return true;
                return false;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns an array containing all of the elements in this queue, in proper
         * sequence.
         *
         * <p>
         * The returned array will be "safe" in that no references to it are
         * maintained by this queue. (In other words, this method must allocate a
         * new array). The caller is thus free to modify the returned array.
         *
         * <p>
         * This method acts as bridge between array-based and collection-based APIs.
         *
         * @return an array containing all of the elements in this queue
         */
        public Object[] toArray() {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                final int count = this.count;
                Object[] a = new Object[count];
                for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
                    a[k] = items[i];
                return a;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns an array containing all of the elements in this queue, in proper
         * sequence; the runtime type of the returned array is that of the specified
         * array. If the queue fits in the specified array, it is returned therein.
         * Otherwise, a new array is allocated with the runtime type of the
         * specified array and the size of this queue.
         *
         * <p>
         * If this queue fits in the specified array with room to spare (i.e., the
         * array has more elements than this queue), the element in the array
         * immediately following the end of the queue is set to {@code null}.
         *
         * <p>
         * Like the {@link #toArray()} method, this method acts as bridge between
         * array-based and collection-based APIs. Further, this method allows
         * precise control over the runtime type of the output array, and may, under
         * certain circumstances, be used to save allocation costs.
         *
         * <p>
         * Suppose {@code x} is a queue known to contain only strings. The following
         * code can be used to dump the queue into a newly allocated array of
         * {@code String}:
         *
         * <pre>
         * String[] y = x.toArray(new String[0]);
         * </pre>
         *
         * Note that {@code toArray(new Object[0])} is identical in function to
         * {@code toArray()}.
         *
         * @param a
         *            the array into which the elements of the queue are to be
         *            stored, if it is big enough; otherwise, a new array of the
         *            same runtime type is allocated for this purpose
         * @return an array containing all of the elements in this queue
         * @throws ArrayStoreException
         *             if the runtime type of the specified array is not a supertype
         *             of the runtime type of every element in this queue
         * @throws NullPointerException
         *             if the specified array is null
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                final int count = this.count;
                final int len = a.length;
                if (len < count)
                    a = (T[]) java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), count);
                for (int i = takeIndex, k = 0; k < count; i = inc(i), k++)
                    a[k] = (T) items[i];
                if (len > count)
                    a[count] = null;
                return a;
            } finally {
                lock.unlock();
            }
        }
    
        public String toString() {
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int k = count;
                if (k == 0)
                    return "[]";
    
                StringBuilder sb = new StringBuilder();
                sb.append('[');
                for (int i = takeIndex;; i = inc(i)) {
                    Object e = items[i];
                    sb.append(e == this ? "(this Collection)" : e);
                    if (--k == 0)
                        return sb.append(']').toString();
                    sb.append(',').append(' ');
                }
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Atomically removes all of the elements from this queue. The queue will be
         * empty after this call returns.
         */
        public void clear() {
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                for (int i = takeIndex, k = count; k > 0; i = inc(i), k--)
                    items[i] = null;
                count = 0;
                putIndex = 0;
                takeIndex = 0;
                notFull.signalAll();
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * @throws UnsupportedOperationException
         *             {@inheritDoc}
         * @throws ClassCastException
         *             {@inheritDoc}
         * @throws NullPointerException
         *             {@inheritDoc}
         * @throws IllegalArgumentException
         *             {@inheritDoc}
         */
        public int drainTo(Collection<? super E> c) {
            checkNotNull(c);
            if (c == this)
                throw new IllegalArgumentException();
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int i = takeIndex;
                int n = 0;
                int max = count;
                while (n < max) {
                    c.add(this.<E>cast(items[i]));
                    items[i] = null;
                    i = inc(i);
                    ++n;
                }
                if (n > 0) {
                    count = 0;
                    putIndex = 0;
                    takeIndex = 0;
                    notFull.signalAll();
                }
                return n;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * @throws UnsupportedOperationException
         *             {@inheritDoc}
         * @throws ClassCastException
         *             {@inheritDoc}
         * @throws NullPointerException
         *             {@inheritDoc}
         * @throws IllegalArgumentException
         *             {@inheritDoc}
         */
        public int drainTo(Collection<? super E> c, int maxElements) {
            checkNotNull(c);
            if (c == this)
                throw new IllegalArgumentException();
            if (maxElements <= 0)
                return 0;
            final Object[] items = this.items;
            final ReentrantLock lock = this.lock;
            lock.lock();
            try {
                int i = takeIndex;
                int n = 0;
                int max = (maxElements < count) ? maxElements : count;
                while (n < max) {
                    c.add(this.<E>cast(items[i]));
                    items[i] = null;
                    i = inc(i);
                    ++n;
                }
                if (n > 0) {
                    count -= n;
                    takeIndex = i;
                    notFull.signalAll();
                }
                return n;
            } finally {
                lock.unlock();
            }
        }
    
        /**
         * Returns an iterator over the elements in this queue in proper sequence.
         * The elements will be returned in order from first (head) to last (tail).
         *
         * <p>
         * The returned {@code Iterator} is a "weakly consistent" iterator that will
         * never throw {@link java.util.ConcurrentModificationException
         * ConcurrentModificationException}, and guarantees to traverse elements as
         * they existed upon construction of the iterator, and may (but is not
         * guaranteed to) reflect any modifications subsequent to construction.
         *
         * @return an iterator over the elements in this queue in proper sequence
         */
        public Iterator<E> iterator() {
            return new Itr();
        }
    
        /**
         * 重点分析方法:
         * 
         * @return
         * @throws InterruptedException
         */
        public E take() throws InterruptedException {
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                //解决伪唤醒
                while (count == 0)
                    notEmpty.await();//如果缓冲区为空的话,则阻塞
                return extract();
            } finally {
                //释放锁
                lock.unlock();
            }
        }
    
        /**
         * Extracts element at current take position, advances, and signals. Call
         * only when holding lock.
         */
        private E extract() {
            final Object[] items = this.items;
            //takeIndexe为消费数据
            E x = this.<E>cast(items[takeIndex]);
            items[takeIndex] = null;
            // 计算下一个消费数据的位置
            takeIndex = inc(takeIndex);
            --count;
            //通知生产者生产数据
            notFull.signal();
            return x;
        }
    
        // Internal helper methods
        /**
         * Circularly increment i.
         */
        final int inc(int i) {
            return (++i == items.length) ? 0 : i;
        }
        
        
        
        /**
         * 重点分析方法:
         * 
         * Inserts the specified element at the tail of this queue, waiting for
         * space to become available if the queue is full.
         *
         * @throws InterruptedException
         *             {@inheritDoc}
         * @throws NullPointerException
         *             {@inheritDoc}
         */
        public void put(E e) throws InterruptedException {
            checkNotNull(e);
            final ReentrantLock lock = this.lock;
            lock.lockInterruptibly();
            try {
                //解决伪唤醒
                while (count == items.length)
                    notFull.await();//如果容器满了则阻塞此处
                insert(e);
            } finally {
                // 释放锁
                lock.unlock();
            }
        }
    
        /**
         * Inserts element at current put position, advances, and signals. Call only
         * when holding lock.
         */
        private void insert(E x) {
            items[putIndex] = x;
            putIndex = inc(putIndex);
            ++count;
            //唤醒消费者进行消费
            notEmpty.signal();
        }
    
        /**
         * Iterator for ArrayBlockingQueue. To maintain weak consistency with
         * respect to puts and takes, we (1) read ahead one slot, so as to not
         * report hasNext true but then not have an element to return -- however we
         * later recheck this slot to use the most current value; (2) ensure that
         * each array slot is traversed at most once (by tracking "remaining"
         * elements); (3) skip over null slots, which can occur if takes race ahead
         * of iterators. However, for circular array-based queues, we cannot rely on
         * any well established definition of what it means to be weakly consistent
         * with respect to interior removes since these may require slot overwrites
         * in the process of sliding elements to cover gaps. So we settle for
         * resiliency, operating on established apparent nexts, which may miss some
         * elements that have moved between calls to next.
         */
        private class Itr implements Iterator<E> {
            private int remaining; // Number of elements yet to be returned
            private int nextIndex; // Index of element to be returned by next
            private E nextItem; // Element to be returned by next call to next
            private E lastItem; // Element returned by last call to next
            private int lastRet; // Index of last element returned, or -1 if none
    
            Itr() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    lastRet = -1;
                    if ((remaining = count) > 0)
                        nextItem = itemAt(nextIndex = takeIndex);
                } finally {
                    lock.unlock();
                }
            }
    
            public boolean hasNext() {
                return remaining > 0;
            }
    
            public E next() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    if (remaining <= 0)
                        throw new NoSuchElementException();
                    lastRet = nextIndex;
                    E x = itemAt(nextIndex); // check for fresher value
                    if (x == null) {
                        x = nextItem; // we are forced to report old value
                        lastItem = null; // but ensure remove fails
                    } else
                        lastItem = x;
                    while (--remaining > 0 && // skip over nulls
                            (nextItem = itemAt(nextIndex = inc(nextIndex))) == null)
                        ;
                    return x;
                } finally {
                    lock.unlock();
                }
            }
    
            public void remove() {
                final ReentrantLock lock = ArrayBlockingQueue.this.lock;
                lock.lock();
                try {
                    int i = lastRet;
                    if (i == -1)
                        throw new IllegalStateException();
                    lastRet = -1;
                    E x = lastItem;
                    lastItem = null;
                    // only remove if item still at index
                    if (x != null && x == items[i]) {
                        boolean removingHead = (i == takeIndex);
                        removeAt(i);
                        if (!removingHead)
                            nextIndex = dec(nextIndex);
                    }
                } finally {
                    lock.unlock();
                }
            }
    
        }
    
    }
  • 相关阅读:
    异常以及异常处理框架探析
    ArcGis Server10 for java初试
    C#制作鹰眼全过程(带注释)
    flex remoteobject 因默认设置而调用失败
    ExecutorService.submit(Callable).get()不并发执行
    学习《The Flex, Spring, and BlazeDS full stack》-1
    java.lang.NoSuchMethodError: org.hibernate.mapping.SimpleValue.<init>(Lorg/hibernate/mapping/Table;)V
    用内置jetty运行项目struts2提示找不到Action
    二分查找
    排序
  • 原文地址:https://www.cnblogs.com/leodaxin/p/7665827.html
Copyright © 2011-2022 走看看