zoukankan      html  css  js  c++  java
  • caffe配置Makefile.config----ubuntu16.04--重点是matlab的编译

    来源:  http://blog.csdn.net/daaikuaichuan/article/details/61414219  

    配置Makefile.config(参考:http://blog.csdn.net/autocyz/article/details/51783857   )
        折腾到这一步,离成功就不远了,接下来就是配置之前搁置的Makefile.config,进入caffe根目录,使用vim编辑器打开Makefile.config。
        在打开的Makefile.config修改如下内容(我自己的配置):

        USE_OPENCV := 1
        USE_LEVELDB := 1
        USE_LMDB := 1
        CUSTOM_CXX := g++
        CUDA_DIR := /usr/local/cuda-7.5
        CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_50,code=compute_50
        BLAS := atlas
        MATLAB_DIR := /home/eric/MATLAB2014/R2014a
        PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/lib/python2.7/dist-packages/numpy/core/include
        PYTHON_LIB := /usr/local/lib
        WITH_PYTHON_LAYER := 1
        INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
        LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
        BUILD_DIR := build
        DISTRIBUTE_DIR := distribute


    9、make所有文件
        进入caffe根目录,输入如下命令:

        sudo make clean
        sudo make all -j4
        sudo make test -j4
        sudo make runtest -j4
        sudo make pycaffe -j4
        sudo make matcaffe -j4


        在命令行下输入Python,会出现Python的一些信息,然后输入import caffe,没有报错说明配置成功。在命令行下输入matlab,会打开MATLAB软件。
        如果前面所有的配置过程都没有问题的话,最后一步应该是不会出错的。至此,caffe所有的配置项都完成了,接下来就可以愉快地使用这个强大的深度学习框架了。

    下面的是我的实际用的:

    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    
    BUILD_PYTHON:=1
    BUILD_MATLAB:=1
    BUILD_docs:=1
    BUILD_SHARELIB:=1
    
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    USE_CUDNN := 1
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    USE_OPENCV := 1
    USE_LEVELDB := 1
    USE_LMDB := 1
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #    You should not set this flag if you will be reading LMDBs with any
    #    possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    # OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
            -gencode arch=compute_20,code=sm_21 
            -gencode arch=compute_30,code=sm_30 
            -gencode arch=compute_35,code=sm_35 
            -gencode arch=compute_50,code=sm_50 
            -gencode arch=compute_52,code=sm_52 
            -gencode arch=compute_60,code=sm_60 
            -gencode arch=compute_61,code=sm_61 
            -gencode arch=compute_61,code=compute_61
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    BLAS_INCLUDE := /usr/include 
    BLAS_LIB := /usr/lib 
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    MATLAB_DIR := /usr/local/MATLAB/R2016b
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    PYTHON_INCLUDE := /usr/include/python2.7 
            /usr/lib/python2.7/dist-packages/numpy/core/include
    
    #PYTHON_LIB:=/usr/lib/x86_64-linux-gnu/libpython2.7.so
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
            # $(ANACONDA_HOME)/include/python2.7 
            # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
    # PYTHON_LIBRARIES := boost_python3 python3.5m
    # PYTHON_INCLUDE := /usr/include/python3.5m 
    #                 /usr/lib/python3.5/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib /usr/local/lib /usr/lib/x86_64-linux-gnu/ 
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @
    
    
    
    
    
    #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
    INCLUDE_DIRS := $(INCLUDE_DIRS) /usr/local/include /usr/include/hdf5/serial/
    LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
    
    LIBRARY_DIRS:=$(LIBRARIES_DIRS) /usr/lib/x86_64-linux-gnu/hdf5/serial  
    sea@sea-X550JK:~/caffeM/caffe$ ll  matlab/+caffe/
    总用量 76
    drwxrwxr-x 5 sea sea 4096 11月  9 17:26 ./
    drwxrwxr-x 5 sea sea 4096 11月  9 17:26 ../
    -rw-rw-r-- 1 sea sea 2930 11月  9 17:26 Blob.m
    -rw-rw-r-- 1 sea sea 1207 11月  9 17:26 get_net.m
    -rw-rw-r-- 1 sea sea  298 11月  9 17:26 get_solver.m
    drwxrwxr-x 2 sea sea 4096 11月  9 17:26 imagenet/
    -rw-rw-r-- 1 sea sea 1742 11月  9 17:26 io.m
    -rw-rw-r-- 1 sea sea  841 11月  9 17:26 Layer.m
    -rw-rw-r-- 1 sea sea 4912 11月  9 17:26 Net.m
    drwxrwxr-x 2 sea sea 4096 11月 10 19:48 private/
    -rw-rw-r-- 1 sea sea  172 11月  9 17:26 reset_all.m
    -rw-rw-r-- 1 sea sea  393 11月  9 17:26 run_tests.m
    -rw-rw-r-- 1 sea sea  250 11月  9 17:26 set_device.m
    -rw-rw-r-- 1 sea sea   97 11月  9 17:26 set_mode_cpu.m
    -rw-rw-r-- 1 sea sea   97 11月  9 17:26 set_mode_gpu.m
    -rw-rw-r-- 1 sea sea 1872 11月  9 17:26 Solver.m
    drwxrwxr-x 2 sea sea 4096 11月  9 17:26 +test/
    -rw-rw-r-- 1 sea sea  110 11月  9 17:26 version.m
    sea@sea-X550JK:~/caffeM/caffe$ 
    # /etc/profile: system-wide .profile file for the Bourne shell (sh(1))
    # and Bourne compatible shells (bash(1), ksh(1), ash(1), ...).
    
    if [ "$PS1" ]; then
      if [ "$BASH" ] && [ "$BASH" != "/bin/sh" ]; then
        # The file bash.bashrc already sets the default PS1.
        # PS1='h:w$ '
        if [ -f /etc/bash.bashrc ]; then
          . /etc/bash.bashrc
        fi
      else
        if [ "`id -u`" -eq 0 ]; then
          PS1='# '
        else
          PS1='$ '
        fi
      fi
    fi
    
    if [ -d /etc/profile.d ]; then
      for i in /etc/profile.d/*.sh; do
        if [ -r $i ]; then
          . $i
        fi
      done
      unset i
    fi
    
    export PYTHONPATH=/usr/local:$PYTHONPATH
    export PYTHONPATH=$PYTHONPATH:/home/sea/caffe2/build
    
    export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
    
    export PYTHONPATH=/home/sea/caffeM/caffe/python:$PYTHONPATH
    
    export PATH=$PATH:/home/sea/caffeM/caffe/build/tools/:/usr/local/cuda-8.0/bin
    export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib:$LD_LIBRARY_PATH
    
    export PYTHONPATH=$PYTHONPATH:/home/sea/caffeM/caffe/python
    
    export PATH=$PATH:/usr/local/MATLAB/R2016b/bin
    
    export MATLABDIR=/usr/local/MATLAB/R2016b
    export Matlab_mex=/usr/local/MATLAB/R2016b/bin/mex
    export Matlab_mexext=/usr/local/MATLAB/R2016b/bin/mexext
  • 相关阅读:
    Datediff的使用(统计本日,昨日,本周,本月)
    数据库之查询语句
    数据库之表关系
    数据库中的数据类型
    数据库概念和基本操作
    IO模型
    并发编程之协程
    GIL与多线程(线程池与进程池,同步异步阻塞非阻塞)
    并发编程之多线程
    并发编程之多进程
  • 原文地址:https://www.cnblogs.com/leoking01/p/7815838.html
Copyright © 2011-2022 走看看