zoukankan      html  css  js  c++  java
  • 吐血整理:PyTorch项目代码与资源列表 | 资源下载

    本文收集了大量基于 PyTorch 实现的代码链接,其中有适用于深度学习新手的“入门指导系列”,也有适用于老司机的论文代码实现,包括 Attention Based CNN、A3C、WGAN等等。所有代码均按照所属技术领域分类,包括机器视觉/图像相关、自然语言处理相关、强化学习相关等等。所以如果你打算入手这风行一世的 PyTorch 技术,那么就快快收藏本文吧!

    PyTorch 是什么?

    PyTorch即 Torch 的 Python 版本。Torch 是由 Facebook 发布的深度学习框架,因支持动态定义计算图,相比于 Tensorflow 使用起来更为灵活方便,特别适合中小型机器学习项目和深度学习初学者。但因为 Torch 的开发语言是Lua,导致它在国内一直很小众。所以,在千呼万唤下,PyTorch应运而生!PyTorch 继承了 Troch 的灵活特性,又使用广为流行的 Python 作为开发语言,所以一经推出就广受欢迎!

    目录:

    1. 入门系列教程

    2. 入门实例

    3. 图像、视觉、CNN相关实现

    4. 对抗生成网络、生成模型、GAN相关实现

    5. 机器翻译、问答系统、NLP相关实现

    6. 先进视觉推理系统

    7. 深度强化学习相关实现

    8. 通用神经网络高级应用

    1

    入门系列教程

    1.PyTorch Tutorials

    https://github.com/MorvanZhou/PyTorch-Tutorial.git

    著名的“莫烦”PyTorch系列教程的源码。

    2.Deep Learning with PyTorch: a 60-minute blitz

    http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

    PyTorch官网推荐的由网友提供的60分钟教程,本系列教程的重点在于介绍PyTorch的基本原理,包括自动求导,神经网络,以及误差优化API。

    3.Simple examples to introduce PyTorch

    https://github.com/jcjohnson/pytorch-examples.git

    由网友提供的PyTorch教程,通过一些实例的方式,讲解PyTorch的基本原理。内容涉及Numpy、自动求导、参数优化、权重共享等。

    2

    入门实例

    1.Ten minutes pyTorch Tutorial

    https://github.com/SherlockLiao/pytorch-beginner.git

    知乎上“十分钟学习PyTorch“系列教程的源码。

    2.Official PyTorch Examples

    https://github.com/pytorch/examples

    官方提供的实例源码,包括以下内容:

    • MNIST Convnets

    • Word level Language Modeling using LSTM RNNs

    • Training Imagenet Classifiers with Residual Networks

    • Generative Adversarial Networks (DCGAN)

    • Variational Auto-Encoders

    • Superresolution using an efficient sub-pixel convolutional neural network

    • Hogwild training of shared ConvNets across multiple processes on MNIST

    • Training a CartPole to balance in OpenAI Gym with actor-critic

    • Natural Language Inference (SNLI) with GloVe vectors, LSTMs, and torchtext

    • Time sequence prediction - create an LSTM to learn Sine waves

    3.PyTorch Tutorial for Deep Learning Researchers

    https://github.com/yunjey/pytorch-tutorial.git

    据说是提供给深度学习科研者们的PyTorch教程←_←。教程中的每个实例的代码都控制在30行左右,简单易懂,内容如下:

    • PyTorch Basics

    • Linear Regression

    • Logistic Regression

    • Feedforward Neural Network

    • Convolutional Neural Network

    • Deep Residual Network

    • Recurrent Neural Network

    • Bidirectional Recurrent Neural Network

    • Language Model (RNN-LM)

    • Generative Adversarial Network

    • Image Captioning (CNN-RNN)

    • Deep Convolutional GAN (DCGAN)

    • Variational Auto-Encoder

    • Neural Style Transfer

    • TensorBoard in PyTorch

    4PyTorch-playground

    https://github.com/aaron-xichen/pytorch-playground.git

    PyTorch初学者的Playground,在这里针对一下常用的数据集,已经写好了一些模型,所以大家可以直接拿过来玩玩看,目前支持以下数据集的模型。

    • mnist, svhn

    • cifar10, cifar100

    • stl10

    • alexnet

    • vgg16, vgg16_bn, vgg19, vgg19_bn

    • resnet18, resnet34, resnet50, resnet101, resnet152

    • squeezenet_v0, squeezenet_v1

    • inception_v3

    3

    图像、视觉、CNN相关实现

    1.PyTorch-FCN

    https://github.com/wkentaro/pytorch-fcn.git

    FCN(Fully Convolutional Networks implemented) 的PyTorch实现。

    2.Attention Transfer

    https://github.com/szagoruyko/attention-transfer.git

    论文 "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer" 的PyTorch实现。

    3.Wide ResNet model in PyTorch

    https://github.com/szagoruyko/functional-zoo.git

    一个PyTorch实现的 ImageNet Classification 。

    4.CRNN for image-based sequence recognition

    https://github.com/bgshih/crnn.git

    这个是 Convolutional Recurrent Neural Network (CRNN) 的 PyTorch 实现。CRNN 由一些CNN,RNN和CTC组成,常用于基于图像的序列识别任务,例如场景文本识别和OCR。

    5.Scaling the Scattering Transform: Deep Hybrid Networks

    https://github.com/edouardoyallon/pyscatwave.git

    使用了“scattering network”的CNN实现,特别的构架提升了网络的效果。

    6.Conditional Similarity Networks (CSNs)

    https://github.com/andreasveit/conditional-similarity-networks.git

    《Conditional Similarity Networks》的PyTorch实现。

    7.Multi-style Generative Network for Real-time Transfer

    https://github.com/zhanghang1989/PyTorch-Style-Transfer.git

    MSG-Net 以及 Neural Style 的 PyTorch 实现。

    8.Big batch training

    https://github.com/eladhoffer/bigBatch.git

    《Train longer, generalize better: closing the generalization gap in large batch training of neural networks》的 PyTorch 实现。

    9.CortexNet

    https://github.com/e-lab/pytorch-CortexNet.git

    一个使用视频训练的鲁棒预测深度神经网络。

    10.Neural Message Passing for Quantum Chemistry

    https://github.com/priba/nmp_qc.git

    论文《Neural Message Passing for Quantum Chemistry》的PyTorch实现,好像是讲计算机视觉下的神经信息传递。

    4

    对抗生成网络、生成模型、GAN相关实现

    1.Generative Adversarial Networks (GANs) in PyTorch

    https://github.com/devnag/pytorch-generative-adversarial-networks.git

    一个非常简单的由PyTorch实现的对抗生成网络

    2.DCGAN & WGAN with Pytorch

    https://github.com/chenyuntc/pytorch-GAN.git

    由中国网友实现的DCGAN和WGAN,代码很简洁。

    3.Official Code for WGAN

    https://github.com/martinarjovsky/WassersteinGAN.git

    WGAN的官方PyTorch实现。

    4.DiscoGAN in PyTorch

    https://github.com/carpedm20/DiscoGAN-pytorch.git

    《Learning to Discover Cross-Domain Relations with Generative Adversarial Networks》的 PyTorch 实现。

    5.Adversarial Generator-Encoder Network

    https://github.com/DmitryUlyanov/AGE.git

    《Adversarial Generator-Encoder Networks》的 PyTorch 实现。

    6.CycleGAN and pix2pix in PyTorch

    https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git

    图到图的翻译,著名的 CycleGAN 以及 pix2pix 的PyTorch 实现。

    7.Weight Normalized GAN

    https://github.com/stormraiser/GAN-weight-norm.git

    《On the Effects of Batch and Weight Normalization in Generative Adversarial Networks》的 PyTorch 实现。

    5

    机器翻译、问答系统、NLP相关实现

    1.DeepLearningForNLPInPytorch

    https://github.com/rguthrie3/DeepLearningForNLPInPytorch.git

    一套以 NLP 为主题的 PyTorch 基础教程。本教程使用Ipython Notebook编写,看起来很直观,方便学习。

    2.Practial Pytorch with Topic RNN & NLP

    https://github.com/spro/practical-pytorch

    以 RNN for NLP 为出发点的 PyTorch 基础教程,分为“RNNs for NLP”和“RNNs for timeseries data”两个部分。

    3.PyOpenNMT: Open-Source Neural Machine Translation

    https://github.com/OpenNMT/OpenNMT-py.git

    一套由PyTorch实现的机器翻译系统。

    4.Deal or No Deal? End-to-End Learning for Negotiation Dialogues

    https://github.com/facebookresearch/end-to-end-negotiator.git

    Facebook AI Research 论文《Deal or No Deal? End-to-End Learning for Negotiation Dialogues》的 PyTorch 实现。

    5.Attention is all you need: A Pytorch Implementation

    https://github.com/jadore801120/attention-is-all-you-need-pytorch.git

    Google Research 著名论文《Attention is all you need》的PyTorch实现。

    6.Improved Visual Semantic Embeddings

    https://github.com/fartashf/vsepp.git

    一种从图像中检索文字的方法,来自论文:《VSE++: Improved Visual-Semantic Embeddings》。

    7.Reading Wikipedia to Answer Open-Domain Questions

    https://github.com/facebookresearch/DrQA.git

    一个开放领域问答系统DrQA的PyTorch实现。

    8.Structured-Self-Attentive-Sentence-Embedding

    https://github.com/ExplorerFreda/Structured-Self-Attentive-Sentence-Embedding.git

    IBM 与 MILA 发表的《A Structured Self-Attentive Sentence Embedding》的开源实现。

    6

    先进视觉推理系统

    1.Visual Question Answering in Pytorch

    https://github.com/Cadene/vqa.pytorch.git

    一个PyTorch实现的优秀视觉推理问答系统,是基于论文《MUTAN: Multimodal Tucker Fusion for Visual Question Answering》实现的。项目中有详细的配置使用方法说明。

    2.Clevr-IEP

    https://github.com/facebookresearch/clevr-iep.git

    Facebook Research 论文《Inferring and Executing Programs for Visual Reasoning》的PyTorch实现,讲的是一个可以基于图片进行关系推理问答的网络。

    7

    深度强化学习相关实现

    1.Deep Reinforcement Learning withpytorch & visdom

    https://github.com/onlytailei/pytorch-rl.git

    多种使用PyTorch实现强化学习的方法。

    2.Value Iteration Networks in PyTorch

    https://github.com/onlytailei/Value-Iteration-Networks-PyTorch.git

    Value Iteration Networks (VIN) 的PyTorch实现。

    3.A3C in PyTorch

    https://github.com/onlytailei/A3C-PyTorch.git

    Adavantage async Actor-Critic (A3C) 的PyTorch实现。

    8

    通用神经网络高级应用

    1.PyTorch-meta-optimizer

    https://github.com/ikostrikov/pytorch-meta-optimizer.git

    论文《Learning to learn by gradient descent by gradient descent》的PyTorch实现。

    2.OptNet: Differentiable Optimization as a Layer in Neural Networks

    https://github.com/locuslab/optnet.git

    论文《Differentiable Optimization as a Layer in Neural Networks》的PyTorch实现。

    3.Task-based End-to-end Model Learning

    https://github.com/locuslab/e2e-model-learning.git

    论文《Task-based End-to-end Model Learning》的PyTorch实现。

    4.DiracNets

    https://github.com/szagoruyko/diracnets.git

    不使用“Skip-Connections”而搭建特别深的神经网络的方法。

    5.ODIN: Out-of-Distribution Detector for Neural Networks

    https://github.com/ShiyuLiang/odin-pytorch.git

    这是一个能够检测“分布不足”(Out-of-Distribution)样本的方法的PyTorch实现。当“true positive rate”为95%时,该方法将DenseNet(适用于CIFAR-10)的“false positive rate”从34.7%降至4.3%。

    6.Accelerate Neural Net Training by Progressively Freezing Layers

    https://github.com/ajbrock/FreezeOut.git

    一种使用“progressively freezing layers”来加速神经网络训练的方法。

    7.Efficient_densenet_pytorch

    https://github.com/gpleiss/efficient_densenet_pytorch.git

    DenseNets的PyTorch实现,优化以节省GPU内存。

    感觉微信文章查询不方便?

    微信公众号后台回复:资源

    可以找到本文PDF和HTML版的下载链接哦!

    (通过连接找到资料下载即可)

    自学容易走弯路?

    快来跟张江教授学习深度学习&PyTorch吧!

  • 相关阅读:
    cookie、localStorage、sessionStorage及三者的区别
    js中的宏任务和微任务
    IDEA工具第二篇:自定义Java注释模板
    JDBC注册驱动的三种方式
    Java POI导出Excel,打开提示“此文件中的某些文本格式可能已经更改......”
    day29 文件的上传和下载 socketserver(并发)
    day 28 黏包 ssh模块 subprocess模块
    day 28 网络基础相关的知识
    day 27 网路编程 面向对象多继承
    day 26 约束、自定义异常、加密hashlib、logging
  • 原文地址:https://www.cnblogs.com/leoking01/p/8493799.html
Copyright © 2011-2022 走看看