zoukankan      html  css  js  c++  java
  • python--线性回归

    首先先安装要用到的包:sklearn,顾名思义机器学习包

    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    from sklearn import datasets, linear_model
    data = pd.read_csv('C://Users//leon//Desktop//CCPP.csv')  #导入数据
    data.head()
    data.shape
    X = data[['AT', 'V', 'AP', 'RH']]           #用AT, V,AP和RH这4个列作为样本特征
    y = data[['PE']]
    from sklearn.cross_validation import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
    print (X_train.shape)
    print (y_train.shape)
    print (X_test.shape)
    print (y_test.shape)                         #训练
    from sklearn.linear_model import LinearRegression
    linreg = LinearRegression()                 #建立模型
    linreg.fit(X_train, y_train)
    print (linreg.intercept_)                #输出模型常量
    print (linreg.coef_)                    #自变量系数
    y_pred = linreg.predict(X_test)
    from sklearn import metrics
    print ("MSE:",metrics.mean_squared_error(y_test, y_pred))     # 通过MSE值进行模型检验
    from sklearn.model_selection import cross_val_predict
    predicted = cross_val_predict(linreg, X, y, cv=10)
    fig, ax = plt.subplots()
    ax.scatter(y, predicted)
    ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
    ax.set_xlabel('Measured')
    ax.set_ylabel('Predicted')
    plt.show()   #作图观察

    通过训练数据集进行预测

  • 相关阅读:
    对物联网的认识
    读书笔记
    Intel:从屌丝逆袭成业界大佬
    实模式:奇葩的存在
    depot_tools Google代码管理工具包
    std::out_of_range异常
    SensorMode选择
    shell脚本学习(2)查找
    shell脚本学习(1)入门
    输入子系统
  • 原文地址:https://www.cnblogs.com/leon507/p/7762465.html
Copyright © 2011-2022 走看看