zoukankan      html  css  js  c++  java
  • Logistic Regression

    Spark Examples

    Logistic Regression

    This is an iterative machine learning algorithm that seeks to find the best hyperplane that separates two sets of points in a multi-dimensional feature space. It can be used to classify messages into spam vs non-spam, for example. Because the algorithm applies the same MapReduce operation repeatedly to the same dataset, it benefits greatly from caching the input data in RAM across iterations.

    val points = spark.textFile(...).map(parsePoint).cache()

    var w = Vector.random(D) // current separating plane

    for (i <- 1 to ITERATIONS) {

      val gradient = points.map(p =>

        (1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.x

      
    ).reduce(_ + _)

      w -= gradient

    }

    println("Final separating plane: " + w)

    Note that w gets shipped automatically to the cluster with every map call.

    The graph below compares the performance of this Spark program against a Hadoop implementation on 30 GB of data on an 80-core cluster, showing the benefit of in-memory caching:

  • 相关阅读:
    匿名内部类详解
    成员内部类详解
    内部类
    局部内部类详解
    switch
    Enum 类型
    循环
    标号
    软件开发模型
    RUP
  • 原文地址:https://www.cnblogs.com/lexus/p/2422598.html
Copyright © 2011-2022 走看看