zoukankan      html  css  js  c++  java
  • Thread pool with same API as (multi)processing.Pool « Python recipes « ActiveState Code

    Thread pool with same API as (multi)processing.Pool « Python recipes « ActiveState Code



    Thread pool with same API as (multi)processing.Pool
    (Python recipe)
    by david decotigny

    ActiveState Code (http://code.activestate.com/recipes/576519/)

    1

       

    There are probably <write your guess here>s of recipes presenting how to implement a pool of threads. Now that multiprocessing is becoming mainstream, this recipe takes multiprocessing.Pool as a model and re-implements it entirely with threads. Even the comments should look familiar... This recipe also adds 2 new methods: imap_async() and imap_unordered_async().
    Python, 738 lines

    Download
    Copy to clipboard

      1
      2
      3
      4
      5
      6
      7
      8
      9
     10
     11
     12
     13
     14
     15
     16
     17
     18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
     41
     42
     43
     44
     45
     46
     47
     48
     49
     50
     51
     52
     53
     54
     55
     56
     57
     58
     59
     60
     61
     62
     63
     64
     65
     66
     67
     68
     69
     70
     71
     72
     73
     74
     75
     76
     77
     78
     79
     80
     81
     82
     83
     84
     85
     86
     87
     88
     89
     90
     91
     92
     93
     94
     95
     96
     97
     98
     99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    295
    296
    297
    298
    299
    300
    301
    302
    303
    304
    305
    306
    307
    308
    309
    310
    311
    312
    313
    314
    315
    316
    317
    318
    319
    320
    321
    322
    323
    324
    325
    326
    327
    328
    329
    330
    331
    332
    333
    334
    335
    336
    337
    338
    339
    340
    341
    342
    343
    344
    345
    346
    347
    348
    349
    350
    351
    352
    353
    354
    355
    356
    357
    358
    359
    360
    361
    362
    363
    364
    365
    366
    367
    368
    369
    370
    371
    372
    373
    374
    375
    376
    377
    378
    379
    380
    381
    382
    383
    384
    385
    386
    387
    388
    389
    390
    391
    392
    393
    394
    395
    396
    397
    398
    399
    400
    401
    402
    403
    404
    405
    406
    407
    408
    409
    410
    411
    412
    413
    414
    415
    416
    417
    418
    419
    420
    421
    422
    423
    424
    425
    426
    427
    428
    429
    430
    431
    432
    433
    434
    435
    436
    437
    438
    439
    440
    441
    442
    443
    444
    445
    446
    447
    448
    449
    450
    451
    452
    453
    454
    455
    456
    457
    458
    459
    460
    461
    462
    463
    464
    465
    466
    467
    468
    469
    470
    471
    472
    473
    474
    475
    476
    477
    478
    479
    480
    481
    482
    483
    484
    485
    486
    487
    488
    489
    490
    491
    492
    493
    494
    495
    496
    497
    498
    499
    500
    501
    502
    503
    504
    505
    506
    507
    508
    509
    510
    511
    512
    513
    514
    515
    516
    517
    518
    519
    520
    521
    522
    523
    524
    525
    526
    527
    528
    529
    530
    531
    532
    533
    534
    535
    536
    537
    538
    539
    540
    541
    542
    543
    544
    545
    546
    547
    548
    549
    550
    551
    552
    553
    554
    555
    556
    557
    558
    559
    560
    561
    562
    563
    564
    565
    566
    567
    568
    569
    570
    571
    572
    573
    574
    575
    576
    577
    578
    579
    580
    581
    582
    583
    584
    585
    586
    587
    588
    589
    590
    591
    592
    593
    594
    595
    596
    597
    598
    599
    600
    601
    602
    603
    604
    605
    606
    607
    608
    609
    610
    611
    612
    613
    614
    615
    616
    617
    618
    619
    620
    621
    622
    623
    624
    625
    626
    627
    628
    629
    630
    631
    632
    633
    634
    635
    636
    637
    638
    639
    640
    641
    642
    643
    644
    645
    646
    647
    648
    649
    650
    651
    652
    653
    654
    655
    656
    657
    658
    659
    660
    661
    662
    663
    664
    665
    666
    667
    668
    669
    670
    671
    672
    673
    674
    675
    676
    677
    678
    679
    680
    681
    682
    683
    684
    685
    686
    687
    688
    689
    690
    691
    692
    693
    694
    695
    696
    697
    698
    699
    700
    701
    702
    703
    704
    705
    706
    707
    708
    709
    710
    711
    712
    713
    714
    715
    716
    717
    718
    719
    720
    721
    722
    723
    724
    725
    726
    727
    728
    729
    730
    731
    732
    733
    734
    735
    736
    737
    738

       

    # Author: David Decotigny, Oct 1 2008
    # @brief Pool of threads similar to multiprocessing.Pool
    # See http://docs.python.org/dev/library/multiprocessing.html
    # Differences: added imap_async and imap_unordered_async, and terminate()
    # has to be called explicitly (it's not registered by atexit).
    #
    # The general idea is that we submit works to a workqueue, either as
    # single Jobs (one function to call), or JobSequences (batch of
    # Jobs). Each Job is associated with an ApplyResult object which has 2
    # states: waiting for the Job to complete, or Ready. Instead of
    # waiting for the jobs to finish, we wait for their ApplyResult object
    # to become ready: an event mechanism is used for that.
    # When we apply a function to several arguments in "parallel", we need
    # a way to wait for all/part of the Jobs to be processed: that's what
    # "collectors" are for; they group and wait for a set of ApplyResult
    # objects. Once a collector is ready to be used, we can use a
    # CollectorIterator to iterate over the result values it's collecting.
    #
    # The methods of a Pool object use all these concepts and expose
    # them to their caller in a very simple way.

    import sys, threading, Queue, traceback

    ## Item pushed on the work queue to tell the worker threads to terminate
    SENTINEL = "QUIT"
    def is_sentinel(obj):
        """Predicate to determine whether an item from the queue is the
        signal to stop"""
        return type(obj) is str and obj == SENTINEL

    class TimeoutError(Exception):
        """Raised when a result is not available within the given timeout"""
        pass

    class PoolWorker(threading.Thread):
        """Thread that consumes WorkUnits from a queue to process them"""
        def __init__(self, workq, *args, **kwds):
            """\param workq: Queue object to consume the work units from"""
            threading.Thread.__init__(self, *args, **kwds)
            self._workq = workq

        def run(self):
            """Process the work unit, or wait for sentinel to exit"""
            while 1:
                workunit = self._workq.get()
                if is_sentinel(workunit):
                    # Got sentinel
                    break

                # Run the job / sequence
                workunit.process()

    class Pool(object):
        """
        The Pool class represents a pool of worker threads. It has methods
        which allows tasks to be offloaded to the worker processes in a
        few different ways
        """

        def __init__(self, nworkers, name="Pool"):
            """
            \param nworkers (integer) number of worker threads to start
            \param name (string) prefix for the worker threads' name
            """
            self._workq   = Queue.Queue()
            self._closed  = False
            self._workers = []
            for idx in xrange(nworkers):
                thr = PoolWorker(self._workq, name="Worker-%s-%d" % (name, idx))
                try:
                    thr.start()
                except:
                    # If one thread has a problem, undo everything
                    self.terminate()
                    raise
                else:
                    self._workers.append(thr)

        def apply(self, func, args=(), kwds=dict()):
            """Equivalent of the apply() builtin function. It blocks till
            the result is ready."""
            return self.apply_async(func, args, kwds).get()

        def map(self, func, iterable, chunksize=None):
            """A parallel equivalent of the map() builtin function. It
            blocks till the result is ready.

            This method chops the iterable into a number of chunks which
            it submits to the process pool as separate tasks. The
            (approximate) size of these chunks can be specified by setting
            chunksize to a positive integer."""
            return self.map_async(func, iterable, chunksize).get()

        def imap(self, func, iterable, chunksize=1):
            """
            An equivalent of itertools.imap().

            The chunksize argument is the same as the one used by the
            map() method. For very long iterables using a large value for
            chunksize can make make the job complete much faster than
            using the default value of 1.

            Also if chunksize is 1 then the next() method of the iterator
            returned by the imap() method has an optional timeout
            parameter: next(timeout) will raise processing.TimeoutError if
            the result cannot be returned within timeout seconds.
            """
            collector = OrderedResultCollector(as_iterator=True)
            self._create_sequences(func, iterable, chunksize, collector)
            return iter(collector)

        def imap_unordered(self, func, iterable, chunksize=1):
            """The same as imap() except that the ordering of the results
            from the returned iterator should be considered
            arbitrary. (Only when there is only one worker process is the
            order guaranteed to be "correct".)"""
            collector = UnorderedResultCollector()
            self._create_sequences(func, iterable, chunksize, collector)
            return iter(collector)

        def apply_async(self, func, args=(), kwds=dict(), callback=None):
            """A variant of the apply() method which returns an
            ApplyResult object.

            If callback is specified then it should be a callable which
            accepts a single argument. When the result becomes ready,
            callback is applied to it (unless the call failed). callback
            should complete immediately since otherwise the thread which
            handles the results will get blocked."""
            assert not self._closed # No lock here. We assume it's atomic...
            apply_result = ApplyResult(callback=callback)
            job = Job(func, args, kwds, apply_result)
            self._workq.put(job)
            return apply_result

        def map_async(self, func, iterable, chunksize=None, callback=None):
            """A variant of the map() method which returns a ApplyResult
            object.

            If callback is specified then it should be a callable which
            accepts a single argument. When the result becomes ready
            callback is applied to it (unless the call failed). callback
            should complete immediately since otherwise the thread which
            handles the results will get blocked."""
            apply_result = ApplyResult(callback=callback)
            collector    = OrderedResultCollector(apply_result, as_iterator=False)
            self._create_sequences(func, iterable, chunksize, collector)
            return apply_result

        def imap_async(self, func, iterable, chunksize=None, callback=None):
            """A variant of the imap() method which returns an ApplyResult
            object that provides an iterator (next method(timeout)
            available).

            If callback is specified then it should be a callable which
            accepts a single argument. When the resulting iterator becomes
            ready, callback is applied to it (unless the call
            failed). callback should complete immediately since otherwise
            the thread which handles the results will get blocked."""
            apply_result = ApplyResult(callback=callback)
            collector    = OrderedResultCollector(apply_result, as_iterator=True)
            self._create_sequences(func, iterable, chunksize, collector)
            return apply_result

        def imap_unordered_async(self, func, iterable, chunksize=None,
                                 callback=None):
            """A variant of the imap_unordered() method which returns an
            ApplyResult object that provides an iterator (next
            method(timeout) available).

            If callback is specified then it should be a callable which
            accepts a single argument. When the resulting iterator becomes
            ready, callback is applied to it (unless the call
            failed). callback should complete immediately since otherwise
            the thread which handles the results will get blocked."""
            apply_result = ApplyResult(callback=callback)
            collector    = UnorderedResultCollector(apply_result)
            self._create_sequences(func, iterable, chunksize, collector)
            return apply_result

        def close(self):
            """Prevents any more tasks from being submitted to the
            pool. Once all the tasks have been completed the worker
            processes will exit."""
            # No lock here. We assume it's sufficiently atomic...
            self._closed = True

        def terminate(self):
            """Stops the worker processes immediately without completing
            outstanding work. When the pool object is garbage collected
            terminate() will be called immediately."""
            self.close()

            # Clearing the job queue
            try:
                while 1:
                    self._workq.get_nowait()
            except Queue.Empty:
                pass

            # Send one sentinel for each worker thread: each thread will die
            # eventually, leaving the next sentinel for the next thread
            for thr in self._workers:
                self._workq.put(SENTINEL)

        def join(self):
            """Wait for the worker processes to exit. One must call
            close() or terminate() before using join()."""
            for thr in self._workers:
                thr.join()

        def _create_sequences(self, func, iterable, chunksize, collector = None):
            """
            Create the WorkUnit objects to process and pushes them on the
            work queue. Each work unit is meant to process a slice of
            iterable of size chunksize. If collector is specified, then
            the ApplyResult objects associated with the jobs will notify
            collector when their result becomes ready.

            \return the list of WorkUnit objects (basically: JobSequences)
            pushed onto the work queue
            """
            assert not self._closed # No lock here. We assume it's atomic...
            sequences = []
            results   = []
            it_ = iter(iterable)
            exit_loop = False
            while not exit_loop:
                seq = []
                for i in xrange(chunksize or 1):
                    try:
                        arg = it_.next()
                    except StopIteration:
                        exit_loop = True
                        break
                    apply_result = ApplyResult(collector)
                    job = Job(func, (arg,), {}, apply_result)
                    seq.append(job)
                    results.append(apply_result)
                sequences.append(JobSequence(seq))

            for seq in sequences:
                self._workq.put(seq)

            return sequences

    class WorkUnit(object):
        """ABC for a unit of work submitted to the worker threads. It's
        basically just an object equipped with a process() method"""
        def process(self):
            """Do the work. Shouldn't raise any exception"""
            raise NotImplementedError("Children must override Process")

    class Job(WorkUnit):
        """A work unit that corresponds to the execution of a single function"""
        def __init__(self, func, args, kwds, apply_result):
            """
            \param func/args/kwds used to call the function
            \param apply_result ApplyResult object that holds the result
            of the function call
            """
            WorkUnit.__init__(self)
            self._func   = func
            self._args   = args
            self._kwds   = kwds
            self._result = apply_result

        def process(self):
            """
            Call the function with the args/kwds and tell the ApplyResult
            that its result is ready. Correctly handles the exceptions
            happening during the execution of the function
            """
            try:
                result = self._func(*self._args, **self._kwds)
            except:
                self._result._set_exception()
            else:
                self._result._set_value(result)

    class JobSequence(WorkUnit):
        """A work unit that corresponds to the processing of a continuous
        sequence of Job objects"""
        def __init__(self, jobs):
            WorkUnit.__init__(self)
            self._jobs = jobs

        def process(self):
            """
            Call process() on all the Job objects that have been specified
            """
            for job in self._jobs:
                job.process()

    class ApplyResult(object):
        """An object associated with a Job object that holds its result:
        it's available during the whole life the Job and after, even when
        the Job didn't process yet. It's possible to use this object to
        wait for the result/exception of the job to be available.

        The result objects returns by the Pool::*_async() methods are of
        this type"""
        def __init__(self, collector = None, callback = None):
            """
            \param collector when not None, the notify_ready() method of
            the collector will be called when the result from the Job is
            ready
            \param callback when not None, function to call when the
            result becomes available (this is the paramater passed to the
            Pool::*_async() methods.
            """
            self._success   = False
            self._event     = threading.Event()
            self._data      = None
            self._collector = None
            self._callback  = callback

            if collector is not None:
                collector.register_result(self)
                self._collector = collector

        def get(self, timeout = None):
            """
            Returns the result when it arrives. If timeout is not None and
            the result does not arrive within timeout seconds then
            TimeoutError is raised. If the remote call raised an exception
            then that exception will be reraised by get().
            """
            if not self.wait(timeout):
                raise TimeoutError("Result not available within %fs" % timeout)
            if self._success:
                return self._data
            raise self._data[0], self._data[1], self._data[2]

        def wait(self, timeout = None):
            """Waits until the result is available or until timeout
            seconds pass."""
            self._event.wait(timeout)
            return self._event.isSet()

        def ready(self):
            """Returns whether the call has completed."""
            return self._event.isSet()

        def successful(self):
            """Returns whether the call completed without raising an
            exception. Will raise AssertionError if the result is not
            ready."""
            assert self.ready()
            return self._success

        def _set_value(self, value):
            """Called by a Job object to tell the result is ready, and
            provides the value of this result. The object will become
            ready and successful. The collector's notify_ready() method
            will be called, and the callback method too"""
            assert not self.ready()
            self._data    = value
            self._success = True
            self._event.set()
            if self._collector is not None:
                self._collector.notify_ready(self)
            if self._callback is not None:
                try:
                    self._callback(value)
                except:
                    traceback.print_exc()

        def _set_exception(self):
            """Called by a Job object to tell that an exception occured
            during the processing of the function. The object will become
            ready but not successful. The collector's notify_ready()
            method will be called, but NOT the callback method"""
            # traceback.print_exc()
            assert not self.ready()
            self._data    = sys.exc_info()
            self._success = False
            self._event.set()
            if self._collector is not None:
                self._collector.notify_ready(self)

    class AbstractResultCollector(object):
        """ABC to define the interface of a ResultCollector object. It is
        basically an object which knows whuich results it's waiting for,
        and which is able to get notify when they get available. It is
        also able to provide an iterator over the results when they are
        available"""

        def __init__(self, to_notify):
            """
            \param to_notify ApplyResult object to notify when all the
            results we're waiting for become available. Can be None.
            """
            self._to_notify = to_notify

        def register_result(self, apply_result):
            """Used to identify which results we're waiting for. Will
            always be called BEFORE the Jobs get submitted to the work
            queue, and BEFORE the __iter__ and _get_result() methods can
            be called
            \param apply_result ApplyResult object to add in our collection
            """
            raise NotImplementedError("Children classes must implement it")

        def notify_ready(self, apply_result):
            """Called by the ApplyResult object (already registered via
            register_result()) that it is now ready (ie. the Job's result
            is available or an exception has been raised).
            \param apply_result ApplyResult object telling us that the job
            has been processed
            """
            raise NotImplementedError("Children classes must implement it")

        def _get_result(self, idx, timeout = None):
            """Called by the CollectorIterator object to retrieve the
            result's values one after another (order defined by the
            implementation)
            \param idx The index of the result we want, wrt collector's order
            \param timeout integer telling how long to wait (in seconds)
            for the result at index idx to be available, or None (wait
            forever)
            """
            raise NotImplementedError("Children classes must implement it")

        def __iter__(self):
            """Return a new CollectorIterator object for this collector"""
            return CollectorIterator(self)

    class CollectorIterator(object):
        """An iterator that allows to iterate over the result values
        available in the given collector object. Equipped with an extended
        next() method accepting a timeout argument. Created by the
        AbstractResultCollector::__iter__() method"""
        def __init__(self, collector):
            """\param AbstractResultCollector instance"""
            self._collector = collector
            self._idx       = 0

        def __iter__(self):
            return self

        def next(self, timeout = None):
            """Return the next result value in the sequence. Raise
            StopIteration at the end. Can raise the exception raised by
            the Job"""
            try:
                apply_result = self._collector._get_result(self._idx, timeout)
            except IndexError:
                # Reset for next time
                self._idx = 0
                raise StopIteration
            except:
                self._idx = 0
                raise
            self._idx += 1
            assert apply_result.ready()
            return apply_result.get(0)

    class UnorderedResultCollector(AbstractResultCollector):
        """An AbstractResultCollector implementation that collects the
        values of the ApplyResult objects in the order they become ready. The
        CollectorIterator object returned by __iter__() will iterate over
        them in the order they become ready"""

        def __init__(self, to_notify = None):
            """
            \param to_notify ApplyResult object to notify when all the
            results we're waiting for become available. Can be None.
            """
            AbstractResultCollector.__init__(self, to_notify)
            self._cond       = threading.Condition()
            self._collection = []
            self._expected   = 0

        def register_result(self, apply_result):
            """Used to identify which results we're waiting for. Will
            always be called BEFORE the Jobs get submitted to the work
            queue, and BEFORE the __iter__ and _get_result() methods can
            be called
            \param apply_result ApplyResult object to add in our collection
            """
            self._expected += 1

        def _get_result(self, idx, timeout = None):
            """Called by the CollectorIterator object to retrieve the
            result's values one after another, in the order the results have
            become available.
            \param idx The index of the result we want, wrt collector's order
            \param timeout integer telling how long to wait (in seconds)
            for the result at index idx to be available, or None (wait
            forever)
            """
            self._cond.acquire()
            try:
                if idx >= self._expected:
                    raise IndexError
                elif idx < len(self._collection):
                    return self._collection[idx]
                elif idx != len(self._collection):
                    # Violation of the sequence protocol
                    raise IndexError()
                else:
                    self._cond.wait(timeout=timeout)
                    try:
                        return self._collection[idx]
                    except IndexError:
                        # Still not added !
                        raise TimeoutError("Timeout while waiting for results")
            finally:
                self._cond.release()

        def notify_ready(self, apply_result):
            """Called by the ApplyResult object (already registered via
            register_result()) that it is now ready (ie. the Job's result
            is available or an exception has been raised).
            \param apply_result ApplyResult object telling us that the job
            has been processed
            """
            first_item = False
            self._cond.acquire()
            try:
                self._collection.append(apply_result)
                first_item = (len(self._collection) == 1)

                self._cond.notifyAll()
            finally:
                self._cond.release()

            if first_item and self._to_notify is not None:
                self._to_notify._set_value(iter(self))

    class OrderedResultCollector(AbstractResultCollector):
        """An AbstractResultCollector implementation that collects the
        values of the ApplyResult objects in the order they have been
        submitted. The CollectorIterator object returned by __iter__()
        will iterate over them in the order they have been submitted"""

        def __init__(self, to_notify = None, as_iterator = True):
            """
            \param to_notify ApplyResult object to notify when all the
            results we're waiting for become available. Can be None.
            \param as_iterator boolean telling whether the result value
            set on to_notify should be an iterator (available as soon as 1
            result arrived) or a list (available only after the last
            result arrived)
            """
            AbstractResultCollector.__init__(self, to_notify)
            self._results     = []
            self._lock        = threading.Lock()
            self._remaining   = 0
            self._as_iterator = as_iterator

        def register_result(self, apply_result):
            """Used to identify which results we're waiting for. Will
            always be called BEFORE the Jobs get submitted to the work
            queue, and BEFORE the __iter__ and _get_result() methods can
            be called
            \param apply_result ApplyResult object to add in our collection
            """
            self._results.append(apply_result)
            self._remaining += 1

        def _get_result(self, idx, timeout = None):
            """Called by the CollectorIterator object to retrieve the
            result's values one after another (order defined by the
            implementation)
            \param idx The index of the result we want, wrt collector's order
            \param timeout integer telling how long to wait (in seconds)
            for the result at index idx to be available, or None (wait
            forever)
            """
            res = self._results[idx]
            res.wait(timeout)
            return res

        def notify_ready(self, apply_result):
            """Called by the ApplyResult object (already registered via
            register_result()) that it is now ready (ie. the Job's result
            is available or an exception has been raised).
            \param apply_result ApplyResult object telling us that the job
            has been processed
            """
            got_first = False
            got_last  = False
            self._lock.acquire()
            try:
                assert self._remaining > 0
                got_first = (len(self._results) == self._remaining)
                self._remaining -= 1
                got_last  = (self._remaining == 0)
            finally:
                self._lock.release()

            if self._to_notify is not None:
                if self._as_iterator and got_first:
                    self._to_notify._set_value(iter(self))
                elif not self._as_iterator and got_last:
                    try:
                        lst = [r.get(0) for r in self._results]
                    except:
                        self._to_notify._set_exception()
                    else:
                        self._to_notify._set_value(lst)

    def _test():
        """Some tests"""
        import thread, time

        def f(x):
            return x*x

        def work(seconds):
            print "[%d] Start to work for %fs..." % (thread.get_ident(), seconds)
            time.sleep(seconds)
            print "[%d] Work done (%fs)." % (thread.get_ident(), seconds)
            return "%d slept %fs" % (thread.get_ident(), seconds)

        ### Test copy/pasted from multiprocessing
        pool = Pool(9)                # start 4 worker threads

        result = pool.apply_async(f, (10,))   # evaluate "f(10)" asynchronously
        print result.get(timeout=1)           # prints "100" unless slow computer

        print pool.map(f, range(10))          # prints "[0, 1, 4,..., 81]"

        it = pool.imap(f, range(10))
        print it.next()                       # prints "0"
        print it.next()                       # prints "1"
        print it.next(timeout=1)              # prints "4" unless slow computer

        # Test apply_sync exceptions
        result = pool.apply_async(time.sleep, (3,))
        try:
            print result.get(timeout=1)           # raises `TimeoutError`
        except TimeoutError:
            print "Good. Got expected timeout exception."
        else:
            assert False, "Expected exception !"
        print result.get()

        def cb(s):
            print "Result ready: %s" % s

        # Test imap()
        for res in pool.imap(work, xrange(10, 3, -1), chunksize=4):
            print "Item:", res

        # Test imap_unordered()
        for res in pool.imap_unordered(work, xrange(10, 3, -1)):
            print "Item:", res

        # Test map_async()
        result = pool.map_async(work, xrange(10), callback=cb)
        try:
            print result.get(timeout=1)           # raises `TimeoutError`
        except TimeoutError:
            print "Good. Got expected timeout exception."
        else:
            assert False, "Expected exception !"
        print result.get()

        # Test imap_async()
        result = pool.imap_async(work, xrange(3, 10), callback=cb)
        try:
            print result.get(timeout=1)           # raises `TimeoutError`
        except TimeoutError:
            print "Good. Got expected timeout exception."
        else:
            assert False, "Expected exception !"
        for i in result.get():
            print "Item:", i
        print "### Loop again:"
        for i in result.get():
            print "Item2:", i

        # Test imap_unordered_async()
        result = pool.imap_unordered_async(work, xrange(10, 3, -1), callback=cb)
        try:
            print result.get(timeout=1)           # raises `TimeoutError`
        except TimeoutError:
            print "Good. Got expected timeout exception."
        else:
            assert False, "Expected exception !"
        for i in result.get():
            print "Item1:", i
        for i in result.get():
            print "Item2:", i
        r = result.get()
        for i in r:
            print "Item3:", i
        for i in r:
            print "Item4:", i
        for i in r:
            print "Item5:", i

        #
        # The case for the exceptions
        #

        # Exceptions in imap_unordered_async()
        result = pool.imap_unordered_async(work, xrange(2, -10, -1), callback=cb)
        time.sleep(3)
        try:
            for i in result.get():
                print "Got item:", i
        except IOError:
            print "Good. Got expected exception:"
            traceback.print_exc()

        # Exceptions in imap_async()
        result = pool.imap_async(work, xrange(2, -10, -1), callback=cb)
        time.sleep(3)
        try:
            for i in result.get():
                print "Got item:", i
        except IOError:
            print "Good. Got expected exception:"
            traceback.print_exc()

        # Stop the test: need to stop the pool !!!
        pool.terminate()
        print "End of tests"

    if __name__ == "__main__":
        _test()

    Be careful to call Pool::terminate() explicitly because the worker threads are not "daemon" threads; otherwise your program will hang forever instead of terminating. This is the main difference in usage wrt multiprocessing::Pool (which registers most of its objects for deletion by atexit).

    When we say that an ApplyResult becomes "ready" above, it means that its associated Job either completed without exception (in which case the ApplyResult is also "successful"), or with an exception. In the first case, calling get() on the ApplyResult object will return the value of the result. In the second, it will raise the exception and the backtrace goes up to the root cause in the worker thread.

    This recipe has been tested with python 2.5 and 2.6b3.

    For more information about the general API, refer to http://docs.python.org/dev/library/multiprocessing.html#module-multiprocessing.pool for example.



  • 相关阅读:
    文件操作_1-24 选择题
    文件操作_1-22 选择题
    文件操作_1-21 选择题
    druid与知乎平台
    b树和b+树
    mybatis generator的generatorConfig.xml配置详解
    logback日志配置文件
    单链表每k个节点为一组进行反转(最后不满k个时不反转)
    单链表每k个节点一组进行反转(最后不足k个也反转)
    shell 结合expect实现ssh登录并执行命令
  • 原文地址:https://www.cnblogs.com/lexus/p/2480641.html
Copyright © 2011-2022 走看看