zoukankan      html  css  js  c++  java
  • The Glowing Python: K means clustering with scipy

    The Glowing Python: K- means clustering with scipy

    K- means clustering with scipy

    K-means clustering is a method for finding clusters and cluster centers in a set of unlabeled data. Intuitively, we might think of a cluster as comprising a group of data points whose inter-point distances are small compared with the distances to points outside of the cluster. Given an initial set of K centers, the K-means algorithm alternates the two steps:
    • for each center we identify the subset of training points (its cluster) that is closer to it than any other center;
    • the means of each feature for the data points in each cluster are computed, and this mean vector becomes the new center for that cluster.
    These two steps are iterated until the centers no longer move or the assignments no longer change. Then, a new point x can be assigned to the cluster of the closest prototype.
    The Scipy library provides a good implementation of the K-Means algorithm. Let's see how to use it:
    from pylab import plot,show
    from numpy import vstack,array
    from numpy.random import rand
    from scipy.cluster.vq import kmeans,vq
    
    # data generation
    data = vstack((rand(150,2) + array([.5,.5]),rand(150,2)))
    
    # computing K-Means with K = 2 (2 clusters)
    centroids,_ = kmeans(data,2)
    # assign each sample to a cluster
    idx,_ = vq(data,centroids)
    
    # some plotting using numpy's logical indexing
    plot(data[idx==0,0],data[idx==0,1],'ob',
         data[idx==1,0],data[idx==1,1],'or')
    plot(centroids[:,0],centroids[:,1],'sg',markersize=8)
    show()
    The result should be as follows:


    In this case we splitted the data in 2 clusters, the blue points have been assigned to the first and the red ones to the second. The squares are the centers of the clusters.
    Let's see try to split the data in 3 clusters:
    # now with K = 3 (3 clusters)
    centroids,_ = kmeans(data,3)
    idx,_ = vq(data,centroids)
    
    plot(data[idx==0,0],data[idx==0,1],'ob',
         data[idx==1,0],data[idx==1,1],'or',
         data[idx==2,0],data[idx==2,1],'og') # third cluster points
    plot(centroids[:,0],centroids[:,1],'sm',markersize=8)
    show()
    This time the the result is as follows:

  • 相关阅读:
    File类 文件过滤器
    LinkedList类的基本方法的用法
    Execption异常 手动和自动抛除异常
    Xshell连接Linux慢问题解决办法
    Liunx网络技术管理及进程管理
    Liunx中三种网络模式配置及Xshell连接
    LInux命令英文全称
    Liunx中fstab文件详解
    20190411RAID磁盘阵列及CentOS7系统启动流程
    20190410Linux中磁盘管理及LVM(week2day1)
  • 原文地址:https://www.cnblogs.com/lexus/p/2808657.html
Copyright © 2011-2022 走看看