zoukankan      html  css  js  c++  java
  • struct – Working with Binary Data¶

    struct – Working with Binary Data - Python Module of the Week

    struct – Working with Binary Data

    Purpose:Convert between strings and binary data.
    Available In:1.4 and later

    The struct module includes functions for converting between strings of bytes and native Python data types such as numbers and strings.

    Functions vs. Struct Class

    There are a set of module-level functions for working with structured values, and there is also the Struct class (new in Python 2.5). Format specifiers are converted from their string format to a compiled representation, similar to the way regular expressions are. The conversion takes some resources, so it is typically more efficient to do it once when creating a Struct instance and call methods on the instance instead of using the module-level functions. All of the examples below use the Struct class.

    Packing and Unpacking

    Structs support packing data into strings, and unpacking data from strings using format specifiers made up of characters representing the type of the data and optional count and endian-ness indicators. For complete details, refer to the standard library documentation.

    In this example, the format specifier calls for an integer or long value, a two character string, and a floating point number. The spaces between the format specifiers are included here for clarity, and are ignored when the format is compiled.

    import struct
    import binascii
    
    values = (1, 'ab', 2.7)
    s = struct.Struct('I 2s f')
    packed_data = s.pack(*values)
    
    print 'Original values:', values
    print 'Format string  :', s.format
    print 'Uses           :', s.size, 'bytes'
    print 'Packed Value   :', binascii.hexlify(packed_data)
    

    The example converts the packed value to a sequence of hex bytes for printing with binascii.hexlify(), since some of the characters are nulls.

    $ python struct_pack.py
    
    Original values: (1, 'ab', 2.7)
    Format string  : I 2s f
    Uses           : 12 bytes
    Packed Value   : 0100000061620000cdcc2c40

    If we pass the packed value to unpack(), we get basically the same values back (note the discrepancy in the floating point value).

    import struct
    import binascii
    
    packed_data = binascii.unhexlify('0100000061620000cdcc2c40')
    
    s = struct.Struct('I 2s f')
    unpacked_data = s.unpack(packed_data)
    print 'Unpacked Values:', unpacked_data
    
    $ python struct_unpack.py
    
    Unpacked Values: (1, 'ab', 2.700000047683716)

    Endianness

    By default values are encoded using the native C library notion of “endianness”. It is easy to override that choice by providing an explicit endianness directive in the format string.

    import struct
    import binascii
    
    values = (1, 'ab', 2.7)
    print 'Original values:', values
    
    endianness = [
        ('@', 'native, native'),
        ('=', 'native, standard'),
        ('<', 'little-endian'),
        ('>', 'big-endian'),
        ('!', 'network'),
        ]
    
    for code, name in endianness:
        s = struct.Struct(code + ' I 2s f')
        packed_data = s.pack(*values)
        print
        print 'Format string  :', s.format, 'for', name
        print 'Uses           :', s.size, 'bytes'
        print 'Packed Value   :', binascii.hexlify(packed_data)
        print 'Unpacked Value :', s.unpack(packed_data)
    
    $ python struct_endianness.py
    
    Original values: (1, 'ab', 2.7)
    
    Format string  : @ I 2s f for native, native
    Uses           : 12 bytes
    Packed Value   : 0100000061620000cdcc2c40
    Unpacked Value : (1, 'ab', 2.700000047683716)
    
    Format string  : = I 2s f for native, standard
    Uses           : 10 bytes
    Packed Value   : 010000006162cdcc2c40
    Unpacked Value : (1, 'ab', 2.700000047683716)
    
    Format string  : < I 2s f for little-endian
    Uses           : 10 bytes
    Packed Value   : 010000006162cdcc2c40
    Unpacked Value : (1, 'ab', 2.700000047683716)
    
    Format string  : > I 2s f for big-endian
    Uses           : 10 bytes
    Packed Value   : 000000016162402ccccd
    Unpacked Value : (1, 'ab', 2.700000047683716)
    
    Format string  : ! I 2s f for network
    Uses           : 10 bytes
    Packed Value   : 000000016162402ccccd
    Unpacked Value : (1, 'ab', 2.700000047683716)

    Buffers

    Working with binary packed data is typically reserved for highly performance sensitive situations or passing data into and out of extension modules. In such situations, you can optimize by avoiding the overhead of allocating a new buffer for each packed structure. The pack_into() and unpack_from() methods support writing to pre-allocated buffers directly.

    import struct
    import binascii
    
    s = struct.Struct('I 2s f')
    values = (1, 'ab', 2.7)
    print 'Original:', values
    
    print
    print 'ctypes string buffer'
    
    import ctypes
    b = ctypes.create_string_buffer(s.size)
    print 'Before  :', binascii.hexlify(b.raw)
    s.pack_into(b, 0, *values)
    print 'After   :', binascii.hexlify(b.raw)
    print 'Unpacked:', s.unpack_from(b, 0)
    
    print
    print 'array'
    
    import array
    a = array.array('c', '\0' * s.size)
    print 'Before  :', binascii.hexlify(a)
    s.pack_into(a, 0, *values)
    print 'After   :', binascii.hexlify(a)
    print 'Unpacked:', s.unpack_from(a, 0)
    

    The size attribute of the Struct tells us how big the buffer needs to be.

    $ python struct_buffers.py
    
    Original: (1, 'ab', 2.7)
    
    ctypes string buffer
    Before  : 000000000000000000000000
    After   : 0100000061620000cdcc2c40
    Unpacked: (1, 'ab', 2.700000047683716)
    
    array
    Before  : 000000000000000000000000
    After   : 0100000061620000cdcc2c40
    Unpacked: (1, 'ab', 2.700000047683716)
  • 相关阅读:
    Unity动态更换图片
    (特殊的)增删改查
    SQL Server 锁
    [转]排序规则
    [转]C#编写Windows服务程序图文教程
    [转]FreeTextBox使用详解 (版本3.1.1)
    [转]Newtonsoft.Json序列化和反序列
    C#性能优化实践(摘抄)
    一、PID控制原理
    POJ 2255已知二叉树前序中序求后序
  • 原文地址:https://www.cnblogs.com/lexus/p/2843236.html
Copyright © 2011-2022 走看看