zoukankan      html  css  js  c++  java
  • MINST手写数字识别(一)—— 全连接网络

    这是一个简单快速入门教程——用Keras搭建神经网络实现手写数字识别,它大部分基于Keras的源代码示例 minst_mlp.py.

    1、安装依赖库

    首先,你需要安装最近版本的Python,再加上一些包Keras,numpy,matplotlib和jupyter.你可以安装这些报在全局,但是我建议安装它们在virtualenv虚拟环境,

    这基本上封装了一个完全孤立的Python环境。

    安装Python包管理器

    sudo easy_install pip

    安装virtualenv

    pip install virtualenv

    使用cd ~进入主目录,并创建一个名为kerasenv的虚拟环境

    virtualenv kerasenv

    再激活这个虚拟环境

    source kerasenv/bin/activate

    现在你可以安装前面提到的包到这个环境

    pip install numpy jupyter keras matplotlib

    2、搭建神经网络

    以下代码都在Google Colab中运行

    2.1 导入一些依赖

    import numpy as np
    import matplotlib.pyplot as plt
    plt.rcParams['figure.figsize'] = (7,7) # Make the figures a bit bigger
    
    from keras.datasets import mnist
    from keras.models import Sequential
    from keras.layers.core import Dense, Dropout, Activation
    from keras.utils import np_utils

     2.2 装载训练数据

    nb_classes = 10
    
    # the data, shuffled and split between tran and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    print("X_train original shape", X_train.shape)
    print("y_train original shape", y_train.shape)

    结果:

    Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz
    11493376/11490434 [==============================] - 0s 0us/step
    X_train original shape (60000, 28, 28)
    y_train original shape (60000,)

    让我们看看训练集中的一些例子:

    for i in range(20):
        plt.subplot(4,5,i+1)
        plt.imshow(X_train[i], cmap='gray', interpolation='none')
        plt.title("Class {}".format(y_train[i]))

     2.3 格式化训练数据

    对于每一个训练样本我们的神经网络得到单个的数组,所以我们需要将28x28的图片变形成784的向量,我们还将输入从[0,255]缩到[0,1].

    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    print("Training matrix shape", X_train.shape)
    print("Testing matrix shape", X_test.shape)

    结果:

    Training matrix shape (60000, 784)
    Testing matrix shape (10000, 784)

    将目标矩阵变成one-hot格式

    0 -> [1, 0, 0, 0, 0, 0, 0, 0, 0]
    1 -> [0, 1, 0, 0, 0, 0, 0, 0, 0]
    2 -> [0, 0, 1, 0, 0, 0, 0, 0, 0]
    etc.
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)

    2.4 搭建神经网络

    2.4.1  搭建三层全连接网络

    我们将做一个简单的三层全连接网络,如下:

    model = Sequential()
    model.add(Dense(512, input_shape=(784,)))
    model.add(Activation('relu')) # An "activation" is just a non-linear function applied to the output
                                  # of the layer above. Here, with a "rectified linear unit",
                                  # we clamp all values below 0 to 0.
                               
    model.add(Dropout(0.2))   # Dropout helps protect the model from memorizing or "overfitting" the training data
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(10))
    model.add(Activation('softmax')) # This special "softmax" activation among other things,
                                     # ensures the output is a valid probaility distribution, that is
                                     # that its values are all non-negative and sum to 1.

    结果:

    WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
    Instructions for updating:
    Colocations handled automatically by placer.
    WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
    Instructions for updating:
    Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.

    2.4.2  编译模型

          Keras是建立在Theano(现在TensorFlow也是),这两个包都允许你定义计算图,然后高效地在CPU或GPU上编译和运行,而没有Python解释器地开销。

          当编译一个模型,Keras要求你确定损失函数和优化器,我使用的是分类交叉熵(categorical crossentropy),它是一种非常适合比较两个概率分布的函数。

          在这里,我们的预测是十个不同数字的概率分布(例如,80%认为这个图片是3,10%认为是2,5%认为是1等),目标是一个概率分布,正确类别为100%,其他所有类别为0。交叉熵是度量两个概率分布差异程度的方法,详情wiki

          优化器帮助模型快速的学习,同时防止“卡住“和“爆炸”的情况,我们不讨论其太多的细节,但是“adam”是一个经常使用的好的选择。

    model.compile(loss='categorical_crossentropy', optimizer='adam')

    2.4.3  训练模型!

    这是有趣的部分:你可以喂入之前加载好的训练集到模型,它将学习如何分类数字.

    model.fit(X_train, Y_train,
              batch_size=128, epochs=4,
              verbose=1,
              validation_data=(X_test, Y_test))

    结果:

    Train on 60000 samples, validate on 10000 samples
    Epoch 1/4
    60000/60000 [==============================] - 10s 171us/step - loss: 0.0514 - val_loss: 0.0691
    Epoch 2/4
    60000/60000 [==============================] - 10s 170us/step - loss: 0.0410 - val_loss: 0.0700
    Epoch 3/4
    60000/60000 [==============================] - 11s 177us/step - loss: 0.0349 - val_loss: 0.0750
    Epoch 4/4
    60000/60000 [==============================] - 11s 184us/step - loss: 0.0298 - val_loss: 0.0616
    <keras.callbacks.History at 0x7f531f596fd0>

    2.4.4  最后,评估其性能

    score = model.evaluate(X_test, Y_test,
                           verbose=0)
    print('Test score:', score)

    效果:

    Test score: 0.061617326979574866

    检查输出,检查输出并确保一切看起来都很合理,这总是一个好主意。接下来,我们看一些分类正确的例子和错误的例子.

    # The predict_classes function outputs the highest probability class
    # according to the trained classifier for each input example.
    predicted_classes = model.predict_classes(X_test)
    
    # Check which items we got right / wrong
    correct_indices = np.nonzero(predicted_classes == y_test)[0]
    incorrect_indices = np.nonzero(predicted_classes != y_test)[0]
    plt.figure()
    for i, correct in enumerate(correct_indices[:9]):
        plt.subplot(3,3,i+1)
        plt.imshow(X_test[correct].reshape(28,28), cmap='gray', interpolation='none')
        plt.title("Predicted {}, Class {}".format(predicted_classes[correct], y_test[correct]))
        
    plt.figure()
    for i, incorrect in enumerate(incorrect_indices[:9]):
        plt.subplot(3,3,i+1)
        plt.imshow(X_test[incorrect].reshape(28,28), cmap='gray', interpolation='none')
        plt.title("Predicted {}, Class {}".format(predicted_classes[incorrect], y_test[incorrect]))

    结果:

    总之,这是一个完整的程序,在Keras主页http://keras.io/和githubhttps://github.com/fchollet/keras有其它许多优秀的例子。

  • 相关阅读:
    PHP官方文档之————secure.php.net.while
    设计模式之————依赖注入(Dependency Injection)与控制反转(Inversion of Controller)
    【精选】Ubuntu 14.04 安装Nginx、php5-fpm、ThinkPHP5.0(已经测试上线)
    PHP 命令行模式实战之cli+mysql 模拟队列批量发送邮件(在Linux环境下PHP 异步执行脚本发送事件通知消息实际案例)
    Visual Studio Code 教程之————入门篇
    Composer学习之————Ubuntu14.04下安装Composer
    Golang入门教程(一)GOPATH与工作空间(Windows)
    流媒体技术学习笔记之(十六)H264编码profile & level控制
    H264编码profile & level控制
    海康中间件测试
  • 原文地址:https://www.cnblogs.com/lfri/p/10479353.html
Copyright © 2011-2022 走看看