zoukankan      html  css  js  c++  java
  • 交叉验证与训练集、验证集、测试集

    一、前言

    训练集验证集测试集这三个名词在机器学习领域极其常见,但很多人并不是特别清楚,尤其是后两个经常被人混用。

    在有监督(supervise)的机器学习中,数据集常被分成2~3个,即:训练集(train set),验证集(validation set),测试集(test set)。

    二、训练集、验证集、测试集

    如果给定的样本数据充足,我们通常使用均匀随机抽样的方式将数据集划分成3个部分——训练集、验证集和测试集,这三个集合不能有交集,常见的比例是8:1:1。需要注意的是,通常都会给定训练集和测试集,而不会给验证集。这时候验证集该从哪里得到呢?一般的做法是,从训练集中均匀随机抽样一部分样本作为验证集。

    训练集

    训练集用来训练模型,即确定模型的权重和偏置这些参数,通常我们称这些参数为学习参数。

    验证集

    而验证集用于模型的选择,更具体地来说,验证集并不参与学习参数的确定,也就是验证集并没有参与梯度下降的过程。验证集只是为了选择超参数,比如网络层数、网络节点数、迭代次数、学习率这些都叫超参数。比如在k-NN算法中,k值就是一个超参数。所以可以使用验证集来求出误差率最小的k。

    测试集

    测试集只使用一次,即在训练完成后评价最终的模型时使用。它既不参与学习参数过程,也不参数超参数选择过程,而仅仅使用于模型的评价。 
    值得注意的是,千万不能在训练过程中使用测试集,而后再用相同的测试集去测试模型。这样做其实是一个cheat,使得模型测试时准确率很高。

    三、为何需要划分

    简而言之,为了防止过度拟合。如果我们把所有数据都用来训练模型的话,建立的模型自然是最契合这些数据的,测试表现也好。但换了其它数据集测试这个模型效果可能就没那么好了。就好像你给班上同学做校服,大家穿着都合适你就觉得按这样做就对了,那给别的班同学穿呢?不合适的概率会高吧。总而言之训练集和测试集相同的话,模型评估结果可能比实际要好。 

    四、交叉验证

    之所以出现交叉验证,主要是因为训练集较小。无法直接像前面那样只分出训练集,验证集,测试就可以了(简单交叉验证)。
    需要说明的是,在实际情况下,人们不是很喜欢用交叉验证,主要是因为它会耗费较多的计算资源。一般直接把训练集按照50%-90%的比例分成训练集和验证集。但这也是根据具体情况来定的:如果超参数数量多,你可能就想用更大的验证集,而验证集的数量不够,那么最好还是用交叉验证吧。至于分成几份比较好,一般都是分成3、5和10份。

    交叉验证的实现

    首先我们给出下面的图 

     图上面的部分表示我们拥有的数据,而后我们对数据进行了再次分割,主要是对训练集,假设将训练集分成5份(该数目被称为折数,5-fold交叉验证),每次都用其中4份来训练模型,粉红色的那份用来验证4份训练出来的模型的准确率,记下准确率。然后在这5份中取另外4份做训练集,1份做验证集,再次得到一个模型的准确率。直到所有5份都做过1次验证集,也即验证集名额循环了一圈,交叉验证的过程就结束。算得这5次准确率的均值。留下准确率最高的模型,即该模型的超参数是什么样的最终模型的超参数就是这个样的。

    好像Keras就是用的交叉验证或者固定超参数(知乎链接

    参考链接:

    1、https://blog.csdn.net/cczx139/article/details/80266101

    2、https://blog.csdn.net/jmh1996/article/details/79838917?tdsourcetag=s_pctim_aiomsg

  • 相关阅读:
    Serialization and deserialization are bottlenecks in parallel and distributed computing, especially in machine learning applications with large objects and large quantities of data.
    Introduction to the Standard Directory Layout
    import 原理 及 导入 自定义、第三方 包
    403 'Forbidden'
    https://bitbucket.org/ariya/phantomjs/downloads/phantomjs-2.1.1-linux-x86_64.tar.bz2
    These interactions can be expressed as complicated, large scale graphs. Mining data requires a distributed data processing engine
    mysqldump --flush-logs
    mysql dump 参数
    mysql dump 参数
    如果是在有master上开启了该参数,记得在slave端也要开启这个参数(salve需要stop后再重新start),否则在master上创建函数会导致replaction中断。
  • 原文地址:https://www.cnblogs.com/lfri/p/10546147.html
Copyright © 2011-2022 走看看