zoukankan      html  css  js  c++  java
  • 高斯消元法【模板】

    高斯消元法,消成行阶梯型矩阵。

    下面两种消元法的时间复杂度都是 $O(n^3)$.

    #include<bits/stdc++.h>
    using namespace std;
    
    const int maxn = 100+10;
    typedef double Matrix[maxn][maxn];
    
    //要求系数矩阵可逆
    //这里的A是增广矩阵,即A[i][n] 是第i个方程右边的常数bi
    //运行结束后A[i][n] 是第i个未知数的值
    void gauss_elimination(Matrix A, int n)
    {
        int i, j, k, r;
    
        for(i = 0;i < n;i++)  //消元过程
        {
            //选绝对值一行r并与第i行交换
            r = i;
            for(j = i+1; j < n;j++)
                if(fabs(A[j][i] > fabs(A[r][i]))) r = j;
            if(r != i) for(j = 0;j <= n;j++)  swap(A[r][j], A[i][j]);
    
            //与第i+1~n行进行消元
            for(k = i+1; k < n;k++)
            {
                double f = A[k][i] / A[i][i];
                for(int j = i;j <= n;j++)  A[k][j] -= f * A[i][j];      //已经是阶梯型矩阵了,所以从i开始
            }
        }
    
        //回代过程
        for(i = n-1;i >= 0;i--)
        {
            for(j = i+1; j < n;j++)
                A[i][n] -= A[j][n] * A[i][j];
            A[i][n] /= A[i][i];
        }
    }
    
    int n;
    Matrix M;
    
    int main()
    {
        while(scanf("%d", &n) == 1)
        {
            for(int i = 0;i < n;i++)
                for(int j = 0;j <= n;j++)
                    scanf("%lf", &M[i][j]);
            gauss_elimination(M, n);
    
            for(int i = 0;i < n;i++)  printf("%.8f
    ", M[i][n]);
        }
    }

    高斯-约当消元法,消成对角矩阵,从而省略掉回代过程。

    #include<bits/stdc++.h>
    using namespace std;
    
    const double eps = 1e-8;
    const int maxn = 100+10;
    typedef double Matrix[maxn][maxn];
    
    //结果为A[i][n]/A[i][i]
    void gauss_jordan(Matrix A, int n)
    {
        int i, j, k, r;
        for(i = 0;i < n;i++)
        {
             //选绝对值一行r并与第i行交换
            r = i;
            for(j = i+1;j < n;j++)
                if(fabs(A[j][i]) > fabs(A[r][i]))  r = j;
            if(fabs(A[r][i]) < eps)  continue;      //放弃这一行,直接处理下一行
            if(r != i)  for(j = 0;j <= n;j++)  swap(A[r][j], A[i][j]);
    
            //与除第i行外的其他行进行消元
            for(k = 0;k < n;k++)  if(k != i)
                for(j = n;j >= i;j--)  A[k][j] -= A[k][i] / A[i][i] * A[i][j];
        }
    }
    
    
    int n;
    Matrix M;
    
    int main()
    {
        while(scanf("%d", &n) == 1)
        {
            for(int i = 0;i < n;i++)
                for(int j = 0;j <= n;j++)
                    scanf("%lf", &M[i][j]);
            gauss_jordan(M, n);
    
            for(int i = 0;i < n;i++)  printf("%.8f
    ", M[i][n] / M[i][i]);
        }
    }

    Code From:

    《算法竞赛入门经典训练指南》——刘汝佳、陈锋编著

  • 相关阅读:
    JS设置CSS样式的几种方式
    jquery基础
    JS里面的两种运动函数
    JavaScript必须了解的知识点总结。
    JavaScript调用函数的方法
    纯CSS完成tab实现5种不同切换对应内容效果
    Web设计师值得收藏的10个jQuery特效
    jQuery的.bind()、.live()和.delegate()之间区别
    Web前端:11个让你代码整洁的原则
    js函数中参数的传递
  • 原文地址:https://www.cnblogs.com/lfri/p/11526479.html
Copyright © 2011-2022 走看看