zoukankan      html  css  js  c++  java
  • NeuHub图像垃圾分类api和百度图像识别api

    京东

    NeuHub图像垃圾分类申请:http://neuhub.jd.com/gwtest/init/242

    文档:https://aidoc.jd.com/image/garbageClassification.html

    import base64
    import wx_sdk  #我是将wx_sdk.py移同当前文件夹了
    import json
    
    url = 'https://aiapi.jd.com/jdai/garbageImageSearch'
    f = open('nfsq.jpg', 'rb')
    #转成base64
    image_base64 = str(base64.b64encode(f.read()), encoding='utf-8')
    #自己xjb并凑的
    bodys = "{"cityId"" + ':' + ""310000"" + ", " + ""imgBase64"" + ':' + """ + image_base64 + """ "}"
    #bodyStr = '{ "cityId":"310000", "imgBase64":"image_base64"}'
    
    params = { 
        'appkey' : '你的appkey',
        'secretkey' : '你的secretkey'}
    response = wx_sdk.wx_post_req(url, params, bodyStr=bodys)
    #print(response.text)
    
    #将json格式转成字典
    result = json.loads(response.text)
    #输出自己想要的一些信息
    for key in result["result"]["garbage_info"]:
        if(key["confidence"] > 0.5):  #只输出置信度超过0.5的,官方建议为0.7
            print(key["cate_name"], key["confidence"], key["garbage_name"])

    百度

    百度图像识别api :https://ai.baidu.com/docs#/ImageClassify-API/ebc492b1

    1. 安装百度api

    pip3 install baidu-aip

    2. 代码

    from aip import AipImageClassify
    
    """ 你的 APPID AK SK """
    APP_ID = '你的APP_ID'
    API_KEY = '你的APP_KEY'
    SECRET_KEY = '你的SECRET_KEY'
    client = AipImageClassify(APP_ID, API_KEY, SECRET_KEY)
    
    def get_file_content(filePath):
        with open(filePath, 'rb') as fp:
            return fp.read()
    image = get_file_content('nfsq.jpg')
    
    
    #返回百科信息的结果数,默认为0,不返回;2为返回前2个结果的百科信息,以此类推。
    options = {}
    options["baike_num"] = 5
    
    """ 带参数调用通用物体识别 """
    result  = client.advancedGeneral(image, options)
    # print(result)
    result_num = result['result_num']
    for i in range(0, result_num):
        print(result['result'][i]['keyword'])

    另一种使用api的方式是使用access_token

    //检测图像中的主体位置,通用物体和场景识别的高级版是收费的?

    1. 获取access_token

    from urllib import request
    import ssl
    import json
    gcontext = ssl.SSLContext(ssl.PROTOCOL_TLSv1)
    # client_id 为官网获取的AK, client_secret 为官网获取的SK
    host = 'https://aip.baidubce.com/oauth/2.0/token?grant_' 
           'type=client_credentials&client_id=你的AK&client_secret=你的SKreq = request.Request(host)
    response = request.urlopen(req, context=gcontext).read().decode('UTF-8')
    result = json.loads(response)
    if (result):
        print(result['access_token'])

    2. 将图片用base64编码

    import base64
    f = open('tiger.jpg', 'rb')
    img = base64.b64encode(f.read())
    print(img)

    3. 调用api

    import requests
    import base64
    host = 'https://aip.baidubce.com/rest/2.0/image-classify/v1/object_detect'
    headers={
       'Content-Type':'application/x-www-form-urlencoded'
    }
    access_token= 'xxx'  #步骤1中获得的token
    host=host+'?access_token='+access_token
    
    f = open('destop.jpg', 'rb')
    img = base64.b64encode(f.read())
    # print(img)
    
    data={}
    data['access_token']=access_token
    data['image'] =img
    res = requests.post(url=host,headers=headers,data=data)
    req=res.json()
    print(req['result'])

    参考链接:

    1. https://blog.csdn.net/cool_bot/article/details/90465167

    2. https://blog.csdn.net/qq_40484582/article/details/82054009

  • 相关阅读:
    [ASM/C/C++]内存碎片处理技术
    NASM网际编译器手册(三)
    NASM网际编译器手册(四)
    NASM网际编译器手册(六)
    NASM网际编译器手册(一)
    IEEE浮点数表示法
    设计模式学习每日一记(12.轻量模式)
    设计模式学习每日一记(11.代理模式)
    canvas一句话备忘录
    usaco1.1.1PROB Your Ride Is Here
  • 原文地址:https://www.cnblogs.com/lfri/p/11919504.html
Copyright © 2011-2022 走看看