zoukankan      html  css  js  c++  java
  • 棋盘分割——维数较大的动态规划

    一、问题描述

    将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

    原棋盘上每一格有一个分值(小于100的非负整数),一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。 (1 < n < 15)

    二、解题思路 / n

    σ = √∑(xi- x) 2/ n,x = ∑xi / n 

    x为平均值,把不管如何切割,已经确定了。

    我们把标准差公式变形(只考虑根号内):

    ∑(xi- x) 2/ n = ∑(xi2 + x2 - 2*xi*x) / n

          =( ∑xi2 + ∑x2 - 2*x*∑x) / n

           = ( ∑xi2 + n*x2 - 2*x*nx) / n

          = ∑xi2 / n - x2

    所以求标准差的最小值,等价于求平方和的最小值。

    用d[k][x1][x2][y1][y2]表示1--x2,y1--y2围成的矩形切割k次平方和的最小值

    横着切:d[k - 1][x1][a][y1][y2] + sum[a + 1][x2][y1][y2](选上边,加下边)

        d[k - 1][a + 1][x2][y1][y2] + sum[x1][a][y1][y2](选下边,加上边)

    竖着切: d[k - 1][x1][x2][y1][b] + sum[x1][x2][b + 1][y2](选右边,加左边)

         d[k - 1][x1][x2][b + 1][y2] + sum[x1][x2][y1][b](选左边,加右边)

    k作为阶段,初始化k ==0 的情况,即未切,易知d[0][x1][x2][y1][y2] = sum[x1][x2][y1][y2],k从小到大递推,d[n - 1][0][7][0][7]就是n个块平方和的最大值。

    三、代码实现

     1 #include<stdio.h>
     2 #include<iostream>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 using namespace std;
     7 
     8 const int INF = 0x3f3f3f3f;
     9 int n;
    10 int arr[10][10];
    11 int sum[10][10][10][10];        //sum[x1][x2][y1][y2]表示x1--x2,y1--y2围成矩形的面积
    12 int d[20][10][10][10][10];        //d[k][x1][x2][y1][y2]表示1--x2,y1--y2围成的矩形切割k次平方和的最小值
    13 
    14 void init()
    15 {
    16     for (int x1 = 0; x1 < 8; x1++)
    17         for (int x2 = x1; x2 < 8; x2++)
    18             for (int y1 = 0; y1 < 8; y1++)
    19                 for (int y2 = y1; y2 < 8; y2++)
    20                 {
    21                     int res = 0;
    22                     for (int a = x1; a <= x2; a++)
    23                         for (int b = y1; b <= y2; b++)
    24                             res += arr[a][b];
    25                     sum[x1][x2][y1][y2] = res * res;
    26                 }
    27 }
    28 
    29 void slove()
    30 {
    31     init();
    32     for(int k = 0;k < n;k++)
    33         for(int x1 = 0;x1 < 8;x1++)
    34             for(int x2 = x1;x2 < 8;x2++)
    35                 for(int y1 = 0;y1 < 8;y1++)
    36                     for (int y2 = y1; y2 < 8; y2++)
    37                     {
    38                         if (k == 0)  d[k][x1][x2][y1][y2] = sum[x1][x2][y1][y2];
    39                         else
    40                         {
    41                             int tmp1 = INF,tmp2 = INF;
    42                             int& ans = d[k][x1][x2][y1][y2];
    43                             ans = INF;
    44                             for (int a = x1; a < x2; a++)
    45                                 tmp1 = min(tmp1,min(d[k - 1][x1][a][y1][y2] + sum[a + 1][x2][y1][y2], d[k - 1][a + 1][x2][y1][y2] + sum[x1][a][y1][y2]));
    46                             for (int b = y1; b < y2; b++)
    47                                 tmp2 = min(tmp2,min(d[k - 1][x1][x2][y1][b] + sum[x1][x2][b + 1][y2], d[k - 1][x1][x2][b + 1][y2] + sum[x1][x2][y1][b]));
    48                             ans = min(ans, min(tmp1, tmp2));
    49                         }
    50                     }
    51 
    52     double res = sqrt((double)d[n - 1][0][7][0][7] / n - (double)sum[0][7][0][7] / ((double)n * n));    //注意开根号,血的教训啊
    53     printf("%.3lf
    ",res );
    54 }
    55 
    56 int main()
    57 {
    58     while (scanf("%d",&n) == 1)
    59     {
    60         for (int i = 0; i < 8; i++)
    61             for (int j = 0; j < 8; j++)
    62                 scanf("%d", &arr[i][j]);
    63         slove();
    64     }
    65 }

    四、总结

    准确的说,这还是我第一次对数学公式进行化简求解问题,可见数学归纳、再化简是解决问题的一种重要方法。

    同时,这也是我第一次做三维以上的动态规划题(虽然与二维三维没多大区别,但也客服了一点心理恐惧),再次使用递推解决问题,而不是记忆化搜索,进一步加深了我对“阶段”,也就是各维循环顺序的理解。

  • 相关阅读:
    怎样监听HTTP请求的发出与完成
    在Ubuntu下安装source Insight
    Android 5.1 预制输入法
    RK3288编译 Android 5.1 固件
    Android编程之Listener侦听的N种写法及实现原理
    android thread Runnable
    Android Service完全解析(下)
    Android Service完全解析(上)
    android 串口 android-serialport-api
    Android Studio在Ubuntu下离线安装Gradle
  • 原文地址:https://www.cnblogs.com/lfri/p/9452587.html
Copyright © 2011-2022 走看看