zoukankan      html  css  js  c++  java
  • 编程之美——一摞烙饼的排序(暴搜+剪枝)

    题目

    分析

    深度优先搜索遍历每一种情况,去翻转次数最小的,当然,还要加一些剪枝,毕竟O(nn)的时间复杂度。

    代码

    C风格

     1 /**** 前缀排序 ****/
     2 #include<stdio.h>
     3 #include<cstring>
     4 #include<algorithm>
     5 using namespace std;
     6 
     7 const int maxn = 100 + 10;
     8 int n, arr[maxn];            //烙饼个数和烙饼数组
     9 int arr_cmp[maxn];
    10 int arr_tmp[maxn];                //记录初始数组
    11 
    12 int search_times = 0;        //总搜索次数
    13 int max_swap;            //最小交换次数
    14 int arr_swap[2 * maxn];        //最终翻转方案
    15 int tarr_swap[2 * maxn];    //当前翻转方案
    16 
    17 void Init()
    18 {
    19     for (int i = 0; i < n; i++)  arr_tmp[i] = arr_cmp[i] = arr[i];
    20     sort(arr_cmp, arr_cmp + n);
    21     max_swap = 2 * (n - 1);
    22 }
    23 
    24 void Reverse(int* arr,int start, int end)
    25 {
    26     for (int i = start, j = end; i < j; i++, j--)
    27         swap(arr[i], arr[j]);
    28 }
    29 
    30 int LowerBound()
    31 {
    32     int ret = 0;
    33     for (int i = 1; i < n; i++)
    34         if (arr[i - 1] > arr[i])  ret++;
    35     return ret;
    36 }
    37 
    38 bool IsSort()
    39 {
    40     for (int i = 0; i < n; i++)
    41         if (arr_cmp[i] != arr[i])  return false;
    42     return true;
    43 }
    44 
    45 void Search(int step)
    46 {
    47     search_times++;
    48 
    49     if (IsSort())    //已排好序
    50     {
    51         if (step < max_swap)
    52         {
    53             max_swap = step;
    54             for (int i = 0; i < max_swap;i++)  arr_swap[i] = tarr_swap[i];
    55         }
    56     }
    57 
    58     if ((step + LowerBound()) > max_swap)  return;
    59 
    60     for (int i = 1; i <= n; i++)
    61     {
    62         Reverse(arr,0, i);
    63         tarr_swap[step] = i;
    64         Search(step + 1);
    65         Reverse(arr,0, i);
    66     }
    67 }
    68 
    69 void Print()
    70 {
    71     printf("搜索次数:%d
    ", search_times);
    72     printf("翻转次数: %d
    ", max_swap);
    73     for (int i = 0; i < max_swap; i++)  printf("%d ", arr_swap[i]);
    74     printf("
    具体的翻转情况:
    ");
    75     for (int i = 0; i < max_swap; i++)
    76     {
    77         Reverse(arr_tmp, 0, arr_swap[i]);
    78         for (int j = 0; j < n; j++)  printf("%d ", arr_tmp[j]);
    79         printf("
    ");
    80     }
    81 }
    82 
    83 int main()
    84 {
    85     scanf("%d", &n);
    86     for (int i = 0; i < n; i++)  scanf("%d", &arr[i]);
    87     Init();
    88     Search(0);
    89     Print();
    90 }

    C++风格

      1 #include<stdio.h>
      2 #include<cstring>
      3 #include<cassert>         //assert宏的原型定义在<assert.h>中
      4 #include<algorithm>
      5 using namespace std;
      6 
      7 class laobing
      8 {
      9 private:
     10     int* m_CakeArray;        //烙饼信息数组
     11     int m_nCakeCnt;            //烙饼个数
     12     int m_nMaxSwap;            //最多翻转次数
     13     int* m_SwapArray;        //最终翻转烙饼位置
     14     int* m_ReverseCakeArray;        //当前烙饼数组
     15     int* m_ReverseCakeArraySwap;    //当前翻转烙饼位置
     16     int m_nSearch;            //搜索次数
     17 
     18 public:
     19     laobing()
     20     {
     21         int m_CakeCnt = 0;
     22         int m_nMaxSwap = 0;
     23     }
     24     ~laobing()
     25     {
     26         if (m_CakeArray != NULL)  delete m_CakeArray;
     27         if (m_SwapArray != NULL)  delete m_SwapArray;
     28         if (m_ReverseCakeArray != NULL)  delete  m_ReverseCakeArray;
     29         if (m_ReverseCakeArraySwap != NULL)  delete m_ReverseCakeArraySwap;
     30     }
     31 
     32     //计算烙饼翻转信息
     33     //pCakeArray    存储烙饼数组
     34     //nCakeCnt      烙饼个数
     35     void run(int* pCakeArray, int nCakeCnt)
     36     {
     37         Init(pCakeArray, nCakeCnt);
     38         m_nSearch = 0;
     39         Search(0);
     40     }
     41 
     42     //输出交换过程
     43     void OutputArray(int* CakeArray, int nCakeCnt, int* m_SwapArray, int m_nMaxSwap)
     44     {
     45         for (int i = 0; i < m_nMaxSwap; i++)   //每一次交换
     46         {
     47             Reverse(CakeArray, 0, m_SwapArray[i]);
     48             for (int i = 0; i < nCakeCnt; i++)  printf("%d ", CakeArray[i]);
     49             printf("
    ");
     50         }
     51     }
     52 
     53     //输出烙饼具体的翻转情况
     54     void Output()
     55     {
     56         for (int i = 0; i < m_nMaxSwap; i++)  printf("%d ", m_SwapArray[i]);
     57         printf("
    ");
     58         printf("Search Times: %d
    ", m_nSearch);
     59         printf("Total Times: %d
    ", m_nMaxSwap);
     60 
     61         OutputArray(m_CakeArray, m_nCakeCnt, m_SwapArray, m_nMaxSwap);
     62     }
     63 private:
     64     void Init(int *pCakeArray, int nCakeCnt)
     65     {
     66         assert(pCakeArray != NULL);        //其作用是如果它的条件返回错误,则终止程序执行。
     67         assert(nCakeCnt > 0);
     68 
     69         //初始化烙饼数组
     70         m_nCakeCnt = nCakeCnt;
     71         m_CakeArray = new int[m_nCakeCnt];
     72         assert(m_CakeArray != NULL);
     73         for (int i = 0; i < m_nCakeCnt; i++)
     74             m_CakeArray[i] = pCakeArray[i];
     75 
     76         //设置最多交换次数
     77         m_nMaxSwap = UpBound(m_nCakeCnt);
     78 
     79         //初始化交换数组结果
     80         m_SwapArray = new int[m_nMaxSwap];
     81         assert(m_SwapArray != NULL);
     82 
     83         //初始化中间交换结果
     84         m_ReverseCakeArray = new int[m_nCakeCnt];
     85         for (int i = 0; i < m_nCakeCnt; i++)
     86             m_ReverseCakeArray[i] = m_CakeArray[i];
     87         m_ReverseCakeArraySwap = new int[m_nMaxSwap];
     88     }
     89 
     90     //寻找当前翻转次数的上界
     91     //n个烙饼,翻转最大的n-2烙饼最多需要2*(n-2)次,剩下的2个最多1次,因而上限值为2*n-3,
     92     //因此,m_nMaxSwap初始值可以取2*n-3+1=2*n-2,这样每步与m_nMaxSwap的判断就可以取大等于号。
     93     int UpBound(int nCakeCnt)
     94     {
     95         return 2 * (nCakeCnt - 1);  
     96     }
     97 
     98     //寻找当前翻转次数的下界
     99     int LowerBound(int* pCakeArray, int nCakeCnt)
    100     {
    101         int ret = 0;
    102 
    103         //根据当前数组的顺序信息来判断最少需要交换多少次
    104         for (int i = 1; i < nCakeCnt; i++)
    105         {
    106             //判断位置相邻的两个烙饼是否是尺寸相邻的
    107             int tmp = pCakeArray[i] - pCakeArray[i - 1];
    108             if (tmp == 1 || tmp == -1)  continue;
    109             else  ret++;
    110         }
    111         if (pCakeArray[nCakeCnt - 1] != nCakeCnt - 1)  ret++;  //判断下界时,如果最大的烙饼不在最后一个位置,则要多翻转一次
    112         return ret;
    113     }
    114 
    115     //排序的主函数
    116     void Search(int step)
    117     {
    118         m_nSearch++;
    119         // // 估算这次搜索所需要的最小交换次数  
    120         int nEstimate = LowerBound(m_ReverseCakeArray, m_nCakeCnt);
    121         if (step + nEstimate >= m_nMaxSwap)  return;        //剪枝
    122 
    123         //如果已经排好序,直接输出
    124         if (IsSort(m_ReverseCakeArray, m_nCakeCnt))
    125         {
    126             if (step < m_nMaxSwap)
    127             {
    128                 m_nMaxSwap = step;
    129                 for (int i = 0; i < m_nMaxSwap; i++)  m_SwapArray[i] = m_ReverseCakeArraySwap[i];
    130             }
    131             return;
    132         }
    133 
    134         //递归进行翻转
    135         for (int i = 1; i < m_nCakeCnt; i++)
    136         {
    137             Reverse(m_ReverseCakeArray, 0, i);
    138             m_ReverseCakeArraySwap[step] = i;
    139             Search(step + 1);    //递归
    140             Reverse(m_ReverseCakeArray,0, i);        //回溯
    141         }
    142     }
    143 
    144     //检查是否排好序
    145     bool IsSort(int * pCakeArray, int nCakeCnt)
    146     {
    147         for(int i = 1;i < nCakeCnt;i++)
    148             if (pCakeArray[i - 1] > pCakeArray[i])  return false;
    149         return true;
    150     }
    151 
    152     //翻转烙饼信息
    153     void Reverse(int* m_arr,int nBegin, int nEnd)
    154     {
    155         assert(nEnd > nBegin);
    156 
    157         for (int i = nBegin, j = nEnd; i < j; i++, j--)
    158             swap(m_arr[i], m_arr[j]);
    159     }
    160 };
    161 
    162 const int maxn = 100 + 10;
    163 int n, arr[maxn];
    164 
    165 int main()
    166 {
    167     laobing lb;
    168     laobing* p = new laobing();
    169     scanf("%d", &n);
    170     for (int i = 0; i < n; i++)  scanf("%d", &arr[i]);
    171 
    172     p->run(arr, n);
    173     p->Output();
    174 
    175     lb.run(arr, n);
    176     return 0;
    177 }

    参考链接:

    https://blog.csdn.net/tianshuai1111/article/details/7659673

    http://blog.sina.com.cn/s/blog_a2aa00d70101ewuf.html

    https://blog.csdn.net/ML_algorithmResearch/article/details/50405548

  • 相关阅读:
    IO流
    myEclipse的使用
    单例模式
    日期的使用
    String类的常用方法
    break、continue和return的区别
    包装类和随机数
    enum类的使用
    Java基础概念性的知识总结
    汇编中的函数调用与递归
  • 原文地址:https://www.cnblogs.com/lfri/p/9938618.html
Copyright © 2011-2022 走看看