zoukankan      html  css  js  c++  java
  • 测试

    这是一条测试

    我想我会一直孤单,直到老去

    而手动挡收到收到

    • 我们的最终目的是
    • 实现共产主义
    • 为了明天
    • 今天躺下

    哈哈哈

    哈哈哈
    哈哈哈

    哈哈

    哈哈

    哈哈哈

    博客园主题

    点击就送


    点击查看代码
    def hello_world():
        print(hello world)
    

    nnnn 妈的 torch.nn as nn 的 2021-11-18 23:15:50星期四

    \(y = x^2\)

    \[y = 1+2+3+4+5_2 + 6^2 \]

    \[h_{i}^{\prime}=\sigma\left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in N_{i}} \alpha_{i j}^{k} W^{k} h_{j}\right) \]

    [========]

    import torch
    import torch.nn as nn
    from torch.utils.tensorboard.summary import text
    from tqdm import tqdm
    from collections import defaultdict
    import config
    from rmseloss import RMSELoss
    import ipdb
    import pandas as pd
    import numpy as np
    
    rmseloss = nn.MSELoss()
    
    def validate(model, validate_loader):
        val_loss = 0
        test_pred = defaultdict(list)
        model.eval()
        for step, batch in tqdm(enumerate(validate_loader)):
            input_ids = batch['input_ids'].to(config.device)
            attention_mask = batch["attention_mask"].to(config.device)
            text = batch['text']
            character = batch['character']
            # target = batch
            with torch.no_grad():
                logists = model(input_ids=input_ids, attention_mask=attention_mask, text=text, character=character)
                val_loss += rmseloss(logists, batch['labels'].to(config.device))
    
        return val_loss / len(validate_loader)
    
    
    def predict(model, test_loader):
        model.eval()
        label_preds = None
        for step, batch in tqdm(enumerate(test_loader)):
            input_ids = batch['input_ids'].to(config.device)
            attention_mask = batch["attention_mask"].to(config.device)
            text = batch['text']
            character = batch['character']
            with torch.no_grad():
                logists = model(input_ids=input_ids, attention_mask=attention_mask, text=text, character=character)
                if label_preds is None:
                    label_preds = logists
                else:
                    label_preds = torch.cat((label_preds, logists), dim=0)
    
        # ipdb.set_trace()
        sub = pd.read_csv('data/submit_example.tsv', sep='\t')
    
        print(len(sub['emotion']))
        sub['emotion'] = label_preds.tolist()
        sub['emotion'] = sub['emotion'].apply(lambda x: ','.join([str(i) for i in x]))
        sub.to_csv(config.res_tsv, sep='\t', index=False)
        print(sub.head(5))
    
    
    个性签名:时间会解决一切
  • 相关阅读:
    【转】三层架构,MVC, ASP.net MVC的区别
    code-Behind
    从输入 URL 到页面加载完成的过程中都发生了什么事情?
    javascript杂谈
    网页设计中透明效果的使用技巧
    phpstorm+Xdebug断点调试PHP
    MySql IFNULL 联表查询出来的null 如何赋值
    php读取目录下的文件
    CI框架程序--本地调试之后部署新浪SAE
    各个手机APP客户端内置浏览器useragent
  • 原文地址:https://www.cnblogs.com/lfri/p/test.html
Copyright © 2011-2022 走看看