zoukankan      html  css  js  c++  java
  • 测试

    这是一条测试

    我想我会一直孤单,直到老去

    而手动挡收到收到

    • 我们的最终目的是
    • 实现共产主义
    • 为了明天
    • 今天躺下

    哈哈哈

    哈哈哈
    哈哈哈

    哈哈

    哈哈

    哈哈哈

    博客园主题

    点击就送


    点击查看代码
    def hello_world():
        print(hello world)
    

    nnnn 妈的 torch.nn as nn 的 2021-11-18 23:15:50星期四

    \(y = x^2\)

    \[y = 1+2+3+4+5_2 + 6^2 \]

    \[h_{i}^{\prime}=\sigma\left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in N_{i}} \alpha_{i j}^{k} W^{k} h_{j}\right) \]

    [========]

    import torch
    import torch.nn as nn
    from torch.utils.tensorboard.summary import text
    from tqdm import tqdm
    from collections import defaultdict
    import config
    from rmseloss import RMSELoss
    import ipdb
    import pandas as pd
    import numpy as np
    
    rmseloss = nn.MSELoss()
    
    def validate(model, validate_loader):
        val_loss = 0
        test_pred = defaultdict(list)
        model.eval()
        for step, batch in tqdm(enumerate(validate_loader)):
            input_ids = batch['input_ids'].to(config.device)
            attention_mask = batch["attention_mask"].to(config.device)
            text = batch['text']
            character = batch['character']
            # target = batch
            with torch.no_grad():
                logists = model(input_ids=input_ids, attention_mask=attention_mask, text=text, character=character)
                val_loss += rmseloss(logists, batch['labels'].to(config.device))
    
        return val_loss / len(validate_loader)
    
    
    def predict(model, test_loader):
        model.eval()
        label_preds = None
        for step, batch in tqdm(enumerate(test_loader)):
            input_ids = batch['input_ids'].to(config.device)
            attention_mask = batch["attention_mask"].to(config.device)
            text = batch['text']
            character = batch['character']
            with torch.no_grad():
                logists = model(input_ids=input_ids, attention_mask=attention_mask, text=text, character=character)
                if label_preds is None:
                    label_preds = logists
                else:
                    label_preds = torch.cat((label_preds, logists), dim=0)
    
        # ipdb.set_trace()
        sub = pd.read_csv('data/submit_example.tsv', sep='\t')
    
        print(len(sub['emotion']))
        sub['emotion'] = label_preds.tolist()
        sub['emotion'] = sub['emotion'].apply(lambda x: ','.join([str(i) for i in x]))
        sub.to_csv(config.res_tsv, sep='\t', index=False)
        print(sub.head(5))
    
    
    个性签名:时间会解决一切
  • 相关阅读:
    c++错误:不允许使用抽象类类型 "Employee" 的对象
    C++ error C2027:使用了未定义类型 类的调用顺序
    PyCharm 2020.1 激活教程
    mysql组内排序
    XGBoost
    React学习——Hello, React
    Lambda表达式
    plsql链接远程oracle服务器,以及常用配置
    静态网站 H5 跳小程序 (短信跳小程序)
    更新(D-U-N-S)邓白氏码公司信息(注册勿看)
  • 原文地址:https://www.cnblogs.com/lfri/p/test.html
Copyright © 2011-2022 走看看