zoukankan      html  css  js  c++  java
  • 十:装饰器模式(io流)

     定义:装饰模式是在不必改变原类文件和使用继承的情况下,动态的扩展一个对象的功能。它是通过创建一个包装对象,也就是装饰来包裹真实的对象。

                     这一个解释,引自百度百科,我们注意其中的几点。

                     1,不改变原类文件。

                     2,不使用继承。

                     3,动态扩展。

                     上述三句话一语道出了装饰器模式的特点,下面LZ给出装饰器模式的类图,先上图再解释。

                      从图中可以看到,我们装饰的是一个接口的任何实现类,而这些实现类也包括了装饰器本身,装饰器本身也可以再被装饰。

                      另外,这个类图只是装饰器模式的完整结构,但其实里面有很多可以变化的地方,LZ给出如下两条。

                      1,Component接口可以是接口也可以是抽象类,甚至是一个普通的父类(这个强烈不推荐,普通的类作为继承体系的超级父类不易于维护)。

                      2,装饰器的抽象父类Decorator并不是必须的。

                     那么我们将上述标准的装饰器模式,用我们熟悉的JAVA代码给诠释一下。首先是待装饰的接口Component。

    复制代码
    package com.decorator;
    
    public interface Component {
    
        void method();
        
    }
    复制代码

                     接下来便是我们的一个具体的接口实现类,也就是俗称的原始对象,或者说待装饰对象。

    复制代码
    package com.decorator;
    
    public class ConcreteComponent implements Component{
    
        public void method() {
            System.out.println("原来的方法");
        }
    
    }
    复制代码

                     下面便是我们的抽象装饰器父类,它主要是为装饰器定义了我们需要装饰的目标是什么,并对Component进行了基础的装饰。

    复制代码
    package com.decorator;
    
    public abstract class Decorator implements Component{
    
        protected Component component;
    
        public Decorator(Component component) {
            super();
            this.component = component;
        }
    
        public void method() {
            component.method();
        }
        
    }
    复制代码

                      再来便是我们具体的装饰器A和装饰器B。

    复制代码
    package com.decorator;
    
    public class ConcreteDecoratorA extends Decorator{
    
        public ConcreteDecoratorA(Component component) {
            super(component);
        }
        
        public void methodA(){
            System.out.println("被装饰器A扩展的功能");
        }
    
        public void method(){
            System.out.println("针对该方法加一层A包装");
            super.method();
            System.out.println("A包装结束");
        }
    }
    复制代码
    复制代码
    package com.decorator;
    
    public class ConcreteDecoratorB extends Decorator{
    
        public ConcreteDecoratorB(Component component) {
            super(component);
        }
        
        public void methodB(){
            System.out.println("被装饰器B扩展的功能");
        }
    
        public void method(){
            System.out.println("针对该方法加一层B包装");
            super.method();
            System.out.println("B包装结束");
        }
    }
    复制代码

                    下面给出我们的测试类。我们针对多种情况进行包装。

    复制代码
    package com.decorator;
    
    public class Main {
    
        public static void main(String[] args) {
            Component component =new ConcreteComponent();//原来的对象
            System.out.println("------------------------------");
            component.method();//原来的方法
            ConcreteDecoratorA concreteDecoratorA = new ConcreteDecoratorA(component);//装饰成A
            System.out.println("------------------------------");
            concreteDecoratorA.method();//原来的方法
            concreteDecoratorA.methodA();//装饰成A以后新增的方法
            ConcreteDecoratorB concreteDecoratorB = new ConcreteDecoratorB(component);//装饰成B
            System.out.println("------------------------------");
            concreteDecoratorB.method();//原来的方法
            concreteDecoratorB.methodB();//装饰成B以后新增的方法
            concreteDecoratorB = new ConcreteDecoratorB(concreteDecoratorA);//装饰成A以后再装饰成B
            System.out.println("------------------------------");
            concreteDecoratorB.method();//原来的方法
            concreteDecoratorB.methodB();//装饰成B以后新增的方法
        }
    }
    复制代码

                     下面看下我们运行的结果,到底是产生了什么效果。

                   从此可以看到,我们首先是使用的原始的类的方法,然后分别让A和B装饰完以后再调用,最后我们将两个装饰器一起使用,再调用该接口定义的方法。

                   上述当中,我们分别对待装饰类进行了原方法的装饰和新功能的增加,methodA和methodB就是新增加的功能,这些都是装饰器可以做的,当然两者并不一定兼有,但一般至少会有一种,否则也就失去了装饰的意义。

                   另外,文章开篇就说道了IO与装饰器的情缘,相信各位就算不太清楚,也都大致听说过JAVA的IO是装饰器模式实现的,所以LZ也不再废话,在给出一个标准的模板示例以后,直接拿出IO的示例,我们真枪实弹的来。

                   下面LZ直接给出IO包中的部分装饰过程,上面LZ加了详细的注释以及各个装饰器的功能演示,各位可以和上面标准的装饰器模式对比一下,LZ不得不感叹,IO与装饰器的孽缘。

    复制代码
    package com.decorator;
    
    import java.io.BufferedInputStream;
    import java.io.BufferedReader;
    import java.io.DataInputStream;
    import java.io.FileInputStream;
    import java.io.IOException;
    import java.io.InputStream;
    import java.io.InputStreamReader;
    import java.io.LineNumberReader;
    import java.io.PushbackInputStream;
    import java.io.PushbackReader;
    
    public class IOTest {
    
        /* test.txt内容:
         * hello world!
         */
        public static void main(String[] args) throws IOException, ClassNotFoundException {
            //文件路径可自行更换
            final String filePath = "E:/myeclipse project/POITest/src/com/decorator/test.txt";
            
            //InputStream相当于被装饰的接口或者抽象类,FileInputStream相当于原始的待装饰的对象,FileInputStream无法装饰InputStream
            //另外FileInputStream是以只读方式打开了一个文件,并打开了一个文件的句柄存放在FileDescriptor对象的handle属性
            //所以下面有关回退和重新标记等操作,都是在堆中建立缓冲区所造成的假象,并不是真正的文件流在回退或者重新标记
            InputStream inputStream = new FileInputStream(filePath);
            final int len = inputStream.available();//记录一下流的长度
            System.out.println("FileInputStream不支持mark和reset:" + inputStream.markSupported());
            
            System.out.println("---------------------------------------------------------------------------------");
            
            /* 下面分别展示三种装饰器的作用BufferedInputStream,DataInputStream,PushbackInputStream,LZ下面做了三个装饰器的功能演示  */
            
            //首先装饰成BufferedInputStream,它提供我们mark,reset的功能
            BufferedInputStream bufferedInputStream = new BufferedInputStream(inputStream);//装饰成 BufferedInputStream
            System.out.println("BufferedInputStream支持mark和reset:" + bufferedInputStream.markSupported());
            bufferedInputStream.mark(0);//标记一下
            char c = (char) bufferedInputStream.read();
            System.out.println("LZ文件的第一个字符:" + c);
            bufferedInputStream.reset();//重置
            c = (char) bufferedInputStream.read();//再读
            System.out.println("重置以后再读一个字符,依然会是第一个字符:" + c);
            bufferedInputStream.reset();
            
            System.out.println("---------------------------------------------------------------------------------");
            
            //装饰成 DataInputStream,我们为了又使用DataInputStream,又使用BufferedInputStream的mark reset功能,所以我们再进行一层包装
            //注意,这里如果不使用BufferedInputStream,而使用原始的InputStream,read方法返回的结果会是-1,即已经读取结束
            //因为BufferedInputStream已经将文本的内容读取完毕,并缓冲到堆上,默认的初始缓冲区大小是8192B
            DataInputStream dataInputStream = new DataInputStream(bufferedInputStream);
            dataInputStream.reset();//这是BufferedInputStream提供的功能,如果不在这个基础上包装会出错
            System.out.println("DataInputStream现在具有readInt,readChar,readUTF等功能");
            int value = dataInputStream.readInt();//读出来一个int,包含四个字节
            //我们转换成字符依次显示出来,可以看到LZ文件的前四个字符
            String binary = Integer.toBinaryString(value);
            int first = binary.length() % 8;
            System.out.print("使用readInt读取的前四个字符:");
            for (int i = 0; i < 4; i++) {
                if (i == 0) {
                    System.out.print(((char)Integer.valueOf(binary.substring(0, first), 2).intValue()));
                }else {
                    System.out.print(((char)Integer.valueOf(binary.substring(( i - 1 ) * 8 + first, i * 8 + first), 2).intValue()));
                }
            }
            System.out.println();
            
            System.out.println("---------------------------------------------------------------------------------");
            
            //PushbackInputStream无法包装BufferedInputStream支持mark reset,因为它覆盖了reset和mark方法
            //因为流已经被读取到末尾,所以我们必须重新打开一个文件的句柄,即FileInputStream
            inputStream = new FileInputStream(filePath);
            PushbackInputStream pushbackInputStream = new PushbackInputStream(inputStream,len);//装饰成 PushbackInputStream
            System.out.println("PushbackInputStream装饰以后支持退回操作unread");
            byte[] bytes = new byte[len];
            pushbackInputStream.read(bytes);//读完了整个流
            System.out.println("unread回退前的内容:" + new String(bytes));
            pushbackInputStream.unread(bytes);//再退回去
            bytes = new byte[len];//清空byte数组
            pushbackInputStream.read(bytes);//再读
            System.out.println("unread回退后的内容:" + new String(bytes));
            
            System.out.println("---------------------------------------------------------------------------------");
            
            /*  以上有两个一层装饰和一个两层装饰,下面我们先装饰成Reader,再进行其它装饰   */
            
            //由于之前被PushbackInputStream将流读取到末尾,我们需要再次重新打开文件句柄
            inputStream = new FileInputStream(filePath);
            InputStreamReader inputStreamReader = new InputStreamReader(inputStream,"utf-8");//先装饰成InputStreamReader
            System.out.println("InputStreamReader有reader的功能,比如转码:" + inputStreamReader.getEncoding());
            
            System.out.println("---------------------------------------------------------------------------------");
            
            BufferedReader bufferedReader = new BufferedReader(inputStreamReader);//我们进一步在reader的基础上装饰成BufferedReader
            System.out.println("BufferedReader有readLine等功能:" + bufferedReader.readLine());
            
            System.out.println("---------------------------------------------------------------------------------");
            
            LineNumberReader lineNumberReader = new LineNumberReader(inputStreamReader);//我们进一步在reader的基础上装饰成LineNumberReader
            System.out.println("LineNumberReader有设置行号,获取行号等功能(行号从0开始),当前行号:" + lineNumberReader.getLineNumber());
            
            System.out.println("---------------------------------------------------------------------------------");
            
            //此处由于刚才被readLine方法将流读取到末尾,所以我们再次重新打开文件句柄,并需要将inputstream再次包装成reader
            inputStreamReader = new InputStreamReader(new FileInputStream(filePath));
            PushbackReader pushbackReader = new PushbackReader(inputStreamReader,len);//我们进一步在reader的基础上装饰成PushbackReader
            System.out.println("PushbackReader是拥有退回操作的reader对象");
            char[] chars = new char[len];
            pushbackReader.read(chars);
            System.out.println("unread回退前的内容:" + new String(chars));
            pushbackReader.unread(chars);//再退回去
            chars = new char[len];//清空char数组
            pushbackReader.read(chars);//再读
            System.out.println("unread回退后的内容:" + new String(chars));
        }
    }
    复制代码

                         上述便是IO的装饰器使用,其中InputStream就相当于上述的Component接口,只不过这里是一个抽象类,这是我们装饰的目标抽象类。FileInputstream就是一个ConcreteComponent,即待装饰的具体对象,它并不是JAVA的IO结构中的一个装饰器,因为它无法装饰InputStream。剩下BufferedInputStream,DataInputstream等等就是各种装饰器了,对比上述的标准装饰器样板,JAVA的IO中也有抽象的装饰器基类的存在,只是上述没有体现出来,就是FilterInputStream,它是很多装饰器最基础的装饰基类。

  • 相关阅读:
    Use Eclipse to develop groovy[docs.codehaus.org]
    Map.putAll方法——追加另一个Map对象到当前Map集合(转)
    限制某个进程只能在某个CPU上运行
    Java实现蓝桥杯 算法提高 身份证号码升级
    Java实现蓝桥杯 算法提高 身份证号码升级
    Java实现蓝桥杯 算法提高 身份证号码升级
    Java实现蓝桥杯 算法提高 身份证号码升级
    Java蓝桥杯 算法训练 复数归一化
    Java实现 蓝桥杯 算法提高 最大乘积
    Java实现 蓝桥杯 算法训练 p1103
  • 原文地址:https://www.cnblogs.com/lgg20/p/11090112.html
Copyright © 2011-2022 走看看