zoukankan      html  css  js  c++  java
  • FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)

    FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法。
    swscale主要用于在2个AVFrame之间进行转换。

    下面来看一个视频解码的简单例子,并将解码后的数据保存为原始数据文件(例如YUV420,YUV422,RGB24等等)。

    /**
    *  使用FFmpeg解析出H264、YUV数据
    */
    
    #include <stdio.h>
    
    extern "C"
    {
    #include "libavcodec/avcodec.h"
    #include "libavformat/avformat.h"
    #include "libswscale/swscale.h"
    #include "libavutil/imgutils.h"
    };
    
    #pragma comment(lib, "avcodec.lib")
    #pragma comment(lib, "avformat.lib")
    #pragma comment(lib, "swscale.lib")
    #pragma comment(lib, "avutil.lib")
    
    int main(int argc, char* argv[])
    {
    	AVFormatContext		*pFormatCtx = NULL;
    	AVCodecContext		*pCodecCtx = NULL;
    	AVCodec				*pCodec = NULL;
    	AVFrame				*pFrame = NULL, *pFrameYUV = NULL;
    	unsigned char		*out_buffer = NULL;
    	AVPacket			packet;
    	struct SwsContext	*img_convert_ctx = NULL;
    	int					got_picture;
    	int					videoIndex;
    	int					frame_cnt = 1;
    
    	char filepath[] = "Titanic.ts";
    	//char filepath[] = "Forrest_Gump_IMAX.mp4";
    
    	FILE *fp_yuv = fopen("film.yuv", "wb+");
    	FILE *fp_h264 = fopen("film.h264", "wb+");
    	if (fp_yuv == NULL || fp_h264 == NULL)
    	{
    		printf("FILE open error");
    		return -1;
    	}
    
    	av_register_all();
    
    	if (avformat_open_input(&pFormatCtx, filepath, NULL, NULL) != 0){
    		printf("Couldn't open an input stream.
    ");
    		return -1;
    	}
    	if (avformat_find_stream_info(pFormatCtx, NULL) < 0){
    		printf("Couldn't find stream information.
    ");
    		return -1;
    	}
    	videoIndex = -1;
    	for (int i = 0; i < pFormatCtx->nb_streams; i++)
    		if (pFormatCtx->streams[i]->codec->codec_type == AVMEDIA_TYPE_VIDEO){
    			videoIndex = i;
    			break;
    		}
    
    	if (videoIndex == -1){
    		printf("Couldn't find a video stream.
    ");
    		return -1;
    	}
    
    	pCodecCtx = pFormatCtx->streams[videoIndex]->codec;
    	pCodec = avcodec_find_decoder(pCodecCtx->codec_id);
    	if (pCodec == NULL){
    		printf("Codec not found.
    ");
    		return -1;
    	}
    	if (avcodec_open2(pCodecCtx, pCodec, NULL) < 0){
    		printf("Could not open codec.
    ");
    		return -1;
    	}
    
    
    
    	pFrame = av_frame_alloc();
    	pFrameYUV = av_frame_alloc();
    	if (pFrame == NULL || pFrameYUV == NULL)
    	{
    		printf("memory allocation error
    ");
    		return -1;
    	}
    
    	/**
    	*  RGB--------->AV_PIX_FMT_RGB24
    	*  YUV420P----->AV_PIX_FMT_YUV420P
    	*  UYVY422----->AV_PIX_FMT_UYVY422
    	*  YUV422P----->AV_PIX_FMT_YUV422P
    	*/
    	out_buffer = (unsigned char *)av_malloc(av_image_get_buffer_size(AV_PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height, 1));
    	av_image_fill_arrays(pFrameYUV->data, pFrameYUV->linesize, out_buffer,
    		AV_PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height, 1);
    	img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt,
    		pCodecCtx->width, pCodecCtx->height, AV_PIX_FMT_YUV420P, SWS_BICUBIC, NULL, NULL, NULL);
    
    
    
    
    	/*
    	//针对H.264码流
    	unsigned char *dummy = NULL;   //输入的指针  
    	int dummy_len;
    	const char nal_start[] = { 0, 0, 0, 1 };
    	AVBitStreamFilterContext* bsfc = av_bitstream_filter_init("h264_mp4toannexb");
    	av_bitstream_filter_filter(bsfc, pCodecCtx, NULL, &dummy, &dummy_len, NULL, 0, 0);
    	fwrite(pCodecCtx->extradata, pCodecCtx->extradata_size, 1, fp_h264);
    	av_bitstream_filter_close(bsfc);
    	free(dummy);
    	*/
    	while (av_read_frame(pFormatCtx, &packet) >= 0)
    	{
    		if (packet.stream_index == videoIndex)
    		{
    			//输出出h.264数据
    			fwrite(packet.data, 1, packet.size, fp_h264);
    			
    			//针对H.264码流
    			//fwrite(nal_start, 4, 1, fp_h264);
    			//fwrite(packet.data + 4, packet.size - 4, 1, fp_h264);
    
    			if (avcodec_decode_video2(pCodecCtx, pFrame, &got_picture, &packet) < 0)
    			{
    				printf("Decode Error.
    ");
    				return -1;
    			}
    			if (got_picture)
    			{
    				sws_scale(img_convert_ctx, (const unsigned char* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height,
    					pFrameYUV->data, pFrameYUV->linesize);
    
    				//输出出YUV数据
    				int y_size = pCodecCtx->width * pCodecCtx->height;
    				fwrite(pFrameYUV->data[0], 1, y_size, fp_yuv);		//Y 
    				fwrite(pFrameYUV->data[1], 1, y_size / 4, fp_yuv);	//U
    				fwrite(pFrameYUV->data[2], 1, y_size / 4, fp_yuv);	//V
    
    				/**
    				*  输出RGB数据
    				*  fwrite(pFrameYUV->data[0], (pCodecCtx->width) * (pCodecCtx->height) * 3, 1, fp);
    				*  输出UYVY数据
    				*  fwrite(pFrameYUV->data[0], (pCodecCtx->width) * (pCodecCtx->height), 2, fp);
    				*/
    				
    				printf("Succeed to decode %d frame!
    ", frame_cnt);
    				frame_cnt++;
    			}
    		}
    		av_free_packet(&packet);
    	}
    
    	//flush decoder
    	//FIX: Flush Frames remained in Codec
    	while (true)
    	{
    		if (avcodec_decode_video2(pCodecCtx, pFrame, &got_picture, &packet) < 0)
    		{
    			break;
    		}
    		if (!got_picture)
    		{
    			break; 
    		}
    			
    		sws_scale(img_convert_ctx, (const unsigned char* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height,
    			pFrameYUV->data, pFrameYUV->linesize);
    
    		int y_size = pCodecCtx->width * pCodecCtx->height;
    		fwrite(pFrameYUV->data[0], 1, y_size, fp_yuv);		//Y 
    		fwrite(pFrameYUV->data[1], 1, y_size / 4, fp_yuv);	//U
    		fwrite(pFrameYUV->data[2], 1, y_size / 4, fp_yuv);	//V
    
    		printf("Flush Decoder: Succeed to decode %d frame!
    ", frame_cnt);
    		frame_cnt++;
    	}
    
    
    	fclose(fp_yuv);
    	fclose(fp_h264);
    	sws_freeContext(img_convert_ctx);
    	av_free(out_buffer);
    	av_frame_free(&pFrameYUV);
    	av_frame_free(&pFrame);
    	avcodec_close(pCodecCtx);
    	avformat_close_input(&pFormatCtx);
    
    	return 0;
    }
    
    
    从代码中可以看出,解码后的视频帧数据保存在pFrame变量中,然后经过swscale函数转换后,将视频帧数据保存在pFrameYUV变量中。最后将pFrameYUV中的数据写入成文件。

    在本代码中,将数据保存成了RGB24的格式。如果想保存成其他格式,比如YUV420,YUV422等,需要做2个步骤:

    1.初始化pFrameYUV的时候,设定想要转换的格式:

    [cpp] view plain copy
    1. AVFrame *pFrame,*pFrameYUV;  
    2. pFrame=avcodec_alloc_frame();  
    3. pFrameYUV=avcodec_alloc_frame();  
    4. uint8_t *out_buffer;  
    5.   
    6. out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)];  
    7. avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);  
    只需要把PIX_FMT_***改了就可以了

    2.在sws_getContext()中更改想要转换的格式:

    [cpp] view plain copy
    1. img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL);   
    也是把PIX_FMT_***改了就可以了


    最后,如果想将转换后的原始数据存成文件,只需要将pFrameYUV的data指针指向的数据写入文件就可以了。

    例如,保存YUV420P格式的数据,用以下代码:

    [cpp] view plain copy
    1. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output);  
    2. fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);  
    3. fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);  

    保存RGB24格式的数据,用以下代码:

    [cpp] view plain copy
    1. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output);  

    保存UYVY格式的数据,用以下代码:

    [cpp] view plain copy
    1. fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output);  

    在这里又有一个问题,YUV420P格式需要写入data[0],data[1],data[2];而RGB24,UYVY格式却仅仅是写入data[0],他们的区别到底是什么呢?经过研究发现,在FFMPEG中,图像原始数据包括两种:planar和packed。planar就是将几个分量分开存,比如YUV420中,data[0]专门存Y,data[1]专门存U,data[2]专门存V。而packed则是打包存,所有数据都存在data[0]中。

    具体哪个格式是planar,哪个格式是packed,可以查看pixfmt.h文件。注:有些格式名称后面是LE或BE,分别对应little-endian或big-endian。另外名字后面有P的是planar格式。

    /*
     * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
     *
     * This file is part of FFmpeg.
     *
     * FFmpeg is free software; you can redistribute it and/or
     * modify it under the terms of the GNU Lesser General Public
     * License as published by the Free Software Foundation; either
     * version 2.1 of the License, or (at your option) any later version.
     *
     * FFmpeg is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * Lesser General Public License for more details.
     *
     * You should have received a copy of the GNU Lesser General Public
     * License along with FFmpeg; if not, write to the Free Software
     * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
     */
    
    #ifndef AVUTIL_PIXFMT_H
    #define AVUTIL_PIXFMT_H
    
    /**
     * @file
     * pixel format definitions
     */
    
    #include "libavutil/avconfig.h"
    #include "version.h"
    
    #define AVPALETTE_SIZE 1024
    #define AVPALETTE_COUNT 256
    
    /**
     * Pixel format.
     *
     * @note
     * AV_PIX_FMT_RGB32 is handled in an endian-specific manner. An RGBA
     * color is put together as:
     *  (A << 24) | (R << 16) | (G << 8) | B
     * This is stored as BGRA on little-endian CPU architectures and ARGB on
     * big-endian CPUs.
     *
     * @par
     * When the pixel format is palettized RGB32 (AV_PIX_FMT_PAL8), the palettized
     * image data is stored in AVFrame.data[0]. The palette is transported in
     * AVFrame.data[1], is 1024 bytes long (256 4-byte entries) and is
     * formatted the same as in AV_PIX_FMT_RGB32 described above (i.e., it is
     * also endian-specific). Note also that the individual RGB32 palette
     * components stored in AVFrame.data[1] should be in the range 0..255.
     * This is important as many custom PAL8 video codecs that were designed
     * to run on the IBM VGA graphics adapter use 6-bit palette components.
     *
     * @par
     * For all the 8bit per pixel formats, an RGB32 palette is in data[1] like
     * for pal8. This palette is filled in automatically by the function
     * allocating the picture.
     */
    enum AVPixelFormat {
        AV_PIX_FMT_NONE = -1,
        AV_PIX_FMT_YUV420P,   ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
        AV_PIX_FMT_YUYV422,   ///< packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
        AV_PIX_FMT_RGB24,     ///< packed RGB 8:8:8, 24bpp, RGBRGB...
        AV_PIX_FMT_BGR24,     ///< packed RGB 8:8:8, 24bpp, BGRBGR...
        AV_PIX_FMT_YUV422P,   ///< planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
        AV_PIX_FMT_YUV444P,   ///< planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
        AV_PIX_FMT_YUV410P,   ///< planar YUV 4:1:0,  9bpp, (1 Cr & Cb sample per 4x4 Y samples)
        AV_PIX_FMT_YUV411P,   ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
        AV_PIX_FMT_GRAY8,     ///<        Y        ,  8bpp
        AV_PIX_FMT_MONOWHITE, ///<        Y        ,  1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb
        AV_PIX_FMT_MONOBLACK, ///<        Y        ,  1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb
        AV_PIX_FMT_PAL8,      ///< 8 bit with AV_PIX_FMT_RGB32 palette
        AV_PIX_FMT_YUVJ420P,  ///< planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting color_range
        AV_PIX_FMT_YUVJ422P,  ///< planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting color_range
        AV_PIX_FMT_YUVJ444P,  ///< planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting color_range
    #if FF_API_XVMC
        AV_PIX_FMT_XVMC_MPEG2_MC,///< XVideo Motion Acceleration via common packet passing
        AV_PIX_FMT_XVMC_MPEG2_IDCT,
    #define AV_PIX_FMT_XVMC AV_PIX_FMT_XVMC_MPEG2_IDCT
    #endif /* FF_API_XVMC */
        AV_PIX_FMT_UYVY422,   ///< packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
        AV_PIX_FMT_UYYVYY411, ///< packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
        AV_PIX_FMT_BGR8,      ///< packed RGB 3:3:2,  8bpp, (msb)2B 3G 3R(lsb)
        AV_PIX_FMT_BGR4,      ///< packed RGB 1:2:1 bitstream,  4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits
        AV_PIX_FMT_BGR4_BYTE, ///< packed RGB 1:2:1,  8bpp, (msb)1B 2G 1R(lsb)
        AV_PIX_FMT_RGB8,      ///< packed RGB 3:3:2,  8bpp, (msb)2R 3G 3B(lsb)
        AV_PIX_FMT_RGB4,      ///< packed RGB 1:2:1 bitstream,  4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits
        AV_PIX_FMT_RGB4_BYTE, ///< packed RGB 1:2:1,  8bpp, (msb)1R 2G 1B(lsb)
        AV_PIX_FMT_NV12,      ///< planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (first byte U and the following byte V)
        AV_PIX_FMT_NV21,      ///< as above, but U and V bytes are swapped
    
        AV_PIX_FMT_ARGB,      ///< packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
        AV_PIX_FMT_RGBA,      ///< packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
        AV_PIX_FMT_ABGR,      ///< packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
        AV_PIX_FMT_BGRA,      ///< packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
    
        AV_PIX_FMT_GRAY16BE,  ///<        Y        , 16bpp, big-endian
        AV_PIX_FMT_GRAY16LE,  ///<        Y        , 16bpp, little-endian
        AV_PIX_FMT_YUV440P,   ///< planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
        AV_PIX_FMT_YUVJ440P,  ///< planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
        AV_PIX_FMT_YUVA420P,  ///< planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
    #if FF_API_VDPAU
        AV_PIX_FMT_VDPAU_H264,///< H.264 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
        AV_PIX_FMT_VDPAU_MPEG1,///< MPEG-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
        AV_PIX_FMT_VDPAU_MPEG2,///< MPEG-2 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
        AV_PIX_FMT_VDPAU_WMV3,///< WMV3 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
        AV_PIX_FMT_VDPAU_VC1, ///< VC-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
    #endif
        AV_PIX_FMT_RGB48BE,   ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big-endian
        AV_PIX_FMT_RGB48LE,   ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as little-endian
    
        AV_PIX_FMT_RGB565BE,  ///< packed RGB 5:6:5, 16bpp, (msb)   5R 6G 5B(lsb), big-endian
        AV_PIX_FMT_RGB565LE,  ///< packed RGB 5:6:5, 16bpp, (msb)   5R 6G 5B(lsb), little-endian
        AV_PIX_FMT_RGB555BE,  ///< packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian   , X=unused/undefined
        AV_PIX_FMT_RGB555LE,  ///< packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined
    
        AV_PIX_FMT_BGR565BE,  ///< packed BGR 5:6:5, 16bpp, (msb)   5B 6G 5R(lsb), big-endian
        AV_PIX_FMT_BGR565LE,  ///< packed BGR 5:6:5, 16bpp, (msb)   5B 6G 5R(lsb), little-endian
        AV_PIX_FMT_BGR555BE,  ///< packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian   , X=unused/undefined
        AV_PIX_FMT_BGR555LE,  ///< packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined
    
    #if FF_API_VAAPI
        /** @name Deprecated pixel formats */
        /**@{*/
        AV_PIX_FMT_VAAPI_MOCO, ///< HW acceleration through VA API at motion compensation entry-point, Picture.data[3] contains a vaapi_render_state struct which contains macroblocks as well as various fields extracted from headers
        AV_PIX_FMT_VAAPI_IDCT, ///< HW acceleration through VA API at IDCT entry-point, Picture.data[3] contains a vaapi_render_state struct which contains fields extracted from headers
        AV_PIX_FMT_VAAPI_VLD,  ///< HW decoding through VA API, Picture.data[3] contains a VASurfaceID
        /**@}*/
        AV_PIX_FMT_VAAPI = AV_PIX_FMT_VAAPI_VLD,
    #else
        /**
         *  Hardware acceleration through VA-API, data[3] contains a
         *  VASurfaceID.
         */
        AV_PIX_FMT_VAAPI,
    #endif
    
        AV_PIX_FMT_YUV420P16LE,  ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
        AV_PIX_FMT_YUV420P16BE,  ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
        AV_PIX_FMT_YUV422P16LE,  ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
        AV_PIX_FMT_YUV422P16BE,  ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
        AV_PIX_FMT_YUV444P16LE,  ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
        AV_PIX_FMT_YUV444P16BE,  ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
    #if FF_API_VDPAU
        AV_PIX_FMT_VDPAU_MPEG4,  ///< MPEG4 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers
    #endif
        AV_PIX_FMT_DXVA2_VLD,    ///< HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer
    
        AV_PIX_FMT_RGB444LE,  ///< packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined
        AV_PIX_FMT_RGB444BE,  ///< packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian,    X=unused/undefined
        AV_PIX_FMT_BGR444LE,  ///< packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined
        AV_PIX_FMT_BGR444BE,  ///< packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian,    X=unused/undefined
        AV_PIX_FMT_YA8,       ///< 8bit gray, 8bit alpha
    
        AV_PIX_FMT_Y400A = AV_PIX_FMT_YA8, ///< alias for AV_PIX_FMT_YA8
        AV_PIX_FMT_GRAY8A= AV_PIX_FMT_YA8, ///< alias for AV_PIX_FMT_YA8
    
        AV_PIX_FMT_BGR48BE,   ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big-endian
        AV_PIX_FMT_BGR48LE,   ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as little-endian
    
        /**
         * The following 12 formats have the disadvantage of needing 1 format for each bit depth.
         * Notice that each 9/10 bits sample is stored in 16 bits with extra padding.
         * If you want to support multiple bit depths, then using AV_PIX_FMT_YUV420P16* with the bpp stored separately is better.
         */
        AV_PIX_FMT_YUV420P9BE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
        AV_PIX_FMT_YUV420P9LE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
        AV_PIX_FMT_YUV420P10BE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
        AV_PIX_FMT_YUV420P10LE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
        AV_PIX_FMT_YUV422P10BE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
        AV_PIX_FMT_YUV422P10LE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
        AV_PIX_FMT_YUV444P9BE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
        AV_PIX_FMT_YUV444P9LE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
        AV_PIX_FMT_YUV444P10BE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
        AV_PIX_FMT_YUV444P10LE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
        AV_PIX_FMT_YUV422P9BE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
        AV_PIX_FMT_YUV422P9LE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
        AV_PIX_FMT_VDA_VLD,    ///< hardware decoding through VDA
        AV_PIX_FMT_GBRP,      ///< planar GBR 4:4:4 24bpp
        AV_PIX_FMT_GBRP9BE,   ///< planar GBR 4:4:4 27bpp, big-endian
        AV_PIX_FMT_GBRP9LE,   ///< planar GBR 4:4:4 27bpp, little-endian
        AV_PIX_FMT_GBRP10BE,  ///< planar GBR 4:4:4 30bpp, big-endian
        AV_PIX_FMT_GBRP10LE,  ///< planar GBR 4:4:4 30bpp, little-endian
        AV_PIX_FMT_GBRP16BE,  ///< planar GBR 4:4:4 48bpp, big-endian
        AV_PIX_FMT_GBRP16LE,  ///< planar GBR 4:4:4 48bpp, little-endian
        AV_PIX_FMT_YUVA422P,  ///< planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
        AV_PIX_FMT_YUVA444P,  ///< planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
        AV_PIX_FMT_YUVA420P9BE,  ///< planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
        AV_PIX_FMT_YUVA420P9LE,  ///< planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian
        AV_PIX_FMT_YUVA422P9BE,  ///< planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
        AV_PIX_FMT_YUVA422P9LE,  ///< planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
        AV_PIX_FMT_YUVA444P9BE,  ///< planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
        AV_PIX_FMT_YUVA444P9LE,  ///< planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
        AV_PIX_FMT_YUVA420P10BE, ///< planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
        AV_PIX_FMT_YUVA420P10LE, ///< planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
        AV_PIX_FMT_YUVA422P10BE, ///< planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
        AV_PIX_FMT_YUVA422P10LE, ///< planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
        AV_PIX_FMT_YUVA444P10BE, ///< planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
        AV_PIX_FMT_YUVA444P10LE, ///< planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
        AV_PIX_FMT_YUVA420P16BE, ///< planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
        AV_PIX_FMT_YUVA420P16LE, ///< planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
        AV_PIX_FMT_YUVA422P16BE, ///< planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
        AV_PIX_FMT_YUVA422P16LE, ///< planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
        AV_PIX_FMT_YUVA444P16BE, ///< planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
        AV_PIX_FMT_YUVA444P16LE, ///< planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
    
        AV_PIX_FMT_VDPAU,     ///< HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface
    
        AV_PIX_FMT_XYZ12LE,      ///< packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as little-endian, the 4 lower bits are set to 0
        AV_PIX_FMT_XYZ12BE,      ///< packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big-endian, the 4 lower bits are set to 0
        AV_PIX_FMT_NV16,         ///< interleaved chroma YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
        AV_PIX_FMT_NV20LE,       ///< interleaved chroma YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
        AV_PIX_FMT_NV20BE,       ///< interleaved chroma YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
    
        AV_PIX_FMT_RGBA64BE,     ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian
        AV_PIX_FMT_RGBA64LE,     ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
        AV_PIX_FMT_BGRA64BE,     ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian
        AV_PIX_FMT_BGRA64LE,     ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian
    
        AV_PIX_FMT_YVYU422,   ///< packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
    
        AV_PIX_FMT_VDA,          ///< HW acceleration through VDA, data[3] contains a CVPixelBufferRef
    
        AV_PIX_FMT_YA16BE,       ///< 16bit gray, 16bit alpha (big-endian)
        AV_PIX_FMT_YA16LE,       ///< 16bit gray, 16bit alpha (little-endian)
    
        AV_PIX_FMT_GBRAP,        ///< planar GBRA 4:4:4:4 32bpp
        AV_PIX_FMT_GBRAP16BE,    ///< planar GBRA 4:4:4:4 64bpp, big-endian
        AV_PIX_FMT_GBRAP16LE,    ///< planar GBRA 4:4:4:4 64bpp, little-endian
        /**
         *  HW acceleration through QSV, data[3] contains a pointer to the
         *  mfxFrameSurface1 structure.
         */
        AV_PIX_FMT_QSV,
        /**
         * HW acceleration though MMAL, data[3] contains a pointer to the
         * MMAL_BUFFER_HEADER_T structure.
         */
        AV_PIX_FMT_MMAL,
    
        AV_PIX_FMT_D3D11VA_VLD,  ///< HW decoding through Direct3D11, Picture.data[3] contains a ID3D11VideoDecoderOutputView pointer
    
        /**
         * HW acceleration through CUDA. data[i] contain CUdeviceptr pointers
         * exactly as for system memory frames.
         */
        AV_PIX_FMT_CUDA,
    
        AV_PIX_FMT_0RGB=0x123+4,///< packed RGB 8:8:8, 32bpp, XRGBXRGB...   X=unused/undefined
        AV_PIX_FMT_RGB0,        ///< packed RGB 8:8:8, 32bpp, RGBXRGBX...   X=unused/undefined
        AV_PIX_FMT_0BGR,        ///< packed BGR 8:8:8, 32bpp, XBGRXBGR...   X=unused/undefined
        AV_PIX_FMT_BGR0,        ///< packed BGR 8:8:8, 32bpp, BGRXBGRX...   X=unused/undefined
    
        AV_PIX_FMT_YUV420P12BE, ///< planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
        AV_PIX_FMT_YUV420P12LE, ///< planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
        AV_PIX_FMT_YUV420P14BE, ///< planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
        AV_PIX_FMT_YUV420P14LE, ///< planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
        AV_PIX_FMT_YUV422P12BE, ///< planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
        AV_PIX_FMT_YUV422P12LE, ///< planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
        AV_PIX_FMT_YUV422P14BE, ///< planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
        AV_PIX_FMT_YUV422P14LE, ///< planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
        AV_PIX_FMT_YUV444P12BE, ///< planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
        AV_PIX_FMT_YUV444P12LE, ///< planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
        AV_PIX_FMT_YUV444P14BE, ///< planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
        AV_PIX_FMT_YUV444P14LE, ///< planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
        AV_PIX_FMT_GBRP12BE,    ///< planar GBR 4:4:4 36bpp, big-endian
        AV_PIX_FMT_GBRP12LE,    ///< planar GBR 4:4:4 36bpp, little-endian
        AV_PIX_FMT_GBRP14BE,    ///< planar GBR 4:4:4 42bpp, big-endian
        AV_PIX_FMT_GBRP14LE,    ///< planar GBR 4:4:4 42bpp, little-endian
        AV_PIX_FMT_YUVJ411P,    ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV411P and setting color_range
    
        AV_PIX_FMT_BAYER_BGGR8,    ///< bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
        AV_PIX_FMT_BAYER_RGGB8,    ///< bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
        AV_PIX_FMT_BAYER_GBRG8,    ///< bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
        AV_PIX_FMT_BAYER_GRBG8,    ///< bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
        AV_PIX_FMT_BAYER_BGGR16LE, ///< bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
        AV_PIX_FMT_BAYER_BGGR16BE, ///< bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
        AV_PIX_FMT_BAYER_RGGB16LE, ///< bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
        AV_PIX_FMT_BAYER_RGGB16BE, ///< bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
        AV_PIX_FMT_BAYER_GBRG16LE, ///< bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
        AV_PIX_FMT_BAYER_GBRG16BE, ///< bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
        AV_PIX_FMT_BAYER_GRBG16LE, ///< bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
        AV_PIX_FMT_BAYER_GRBG16BE, ///< bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
    #if !FF_API_XVMC
        AV_PIX_FMT_XVMC,///< XVideo Motion Acceleration via common packet passing
    #endif /* !FF_API_XVMC */
        AV_PIX_FMT_YUV440P10LE, ///< planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
        AV_PIX_FMT_YUV440P10BE, ///< planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
        AV_PIX_FMT_YUV440P12LE, ///< planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
        AV_PIX_FMT_YUV440P12BE, ///< planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
        AV_PIX_FMT_AYUV64LE,    ///< packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
        AV_PIX_FMT_AYUV64BE,    ///< packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
    
        AV_PIX_FMT_VIDEOTOOLBOX, ///< hardware decoding through Videotoolbox
    
        AV_PIX_FMT_P010LE, ///< like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
        AV_PIX_FMT_P010BE, ///< like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
    
        AV_PIX_FMT_GBRAP12BE,  ///< planar GBR 4:4:4:4 48bpp, big-endian
        AV_PIX_FMT_GBRAP12LE,  ///< planar GBR 4:4:4:4 48bpp, little-endian
    
        AV_PIX_FMT_NB,        ///< number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of formats might differ between versions
    };
    
    #define AV_PIX_FMT_Y400A AV_PIX_FMT_GRAY8A
    #define AV_PIX_FMT_GBR24P AV_PIX_FMT_GBRP
    
    #if AV_HAVE_BIGENDIAN
    #   define AV_PIX_FMT_NE(be, le) AV_PIX_FMT_##be
    #else
    #   define AV_PIX_FMT_NE(be, le) AV_PIX_FMT_##le
    #endif
    
    #define AV_PIX_FMT_RGB32   AV_PIX_FMT_NE(ARGB, BGRA)
    #define AV_PIX_FMT_RGB32_1 AV_PIX_FMT_NE(RGBA, ABGR)
    #define AV_PIX_FMT_BGR32   AV_PIX_FMT_NE(ABGR, RGBA)
    #define AV_PIX_FMT_BGR32_1 AV_PIX_FMT_NE(BGRA, ARGB)
    #define AV_PIX_FMT_0RGB32  AV_PIX_FMT_NE(0RGB, BGR0)
    #define AV_PIX_FMT_0BGR32  AV_PIX_FMT_NE(0BGR, RGB0)
    
    #define AV_PIX_FMT_GRAY16 AV_PIX_FMT_NE(GRAY16BE, GRAY16LE)
    #define AV_PIX_FMT_YA16   AV_PIX_FMT_NE(YA16BE,   YA16LE)
    #define AV_PIX_FMT_RGB48  AV_PIX_FMT_NE(RGB48BE,  RGB48LE)
    #define AV_PIX_FMT_RGB565 AV_PIX_FMT_NE(RGB565BE, RGB565LE)
    #define AV_PIX_FMT_RGB555 AV_PIX_FMT_NE(RGB555BE, RGB555LE)
    #define AV_PIX_FMT_RGB444 AV_PIX_FMT_NE(RGB444BE, RGB444LE)
    #define AV_PIX_FMT_RGBA64 AV_PIX_FMT_NE(RGBA64BE, RGBA64LE)
    #define AV_PIX_FMT_BGR48  AV_PIX_FMT_NE(BGR48BE,  BGR48LE)
    #define AV_PIX_FMT_BGR565 AV_PIX_FMT_NE(BGR565BE, BGR565LE)
    #define AV_PIX_FMT_BGR555 AV_PIX_FMT_NE(BGR555BE, BGR555LE)
    #define AV_PIX_FMT_BGR444 AV_PIX_FMT_NE(BGR444BE, BGR444LE)
    #define AV_PIX_FMT_BGRA64 AV_PIX_FMT_NE(BGRA64BE, BGRA64LE)
    
    #define AV_PIX_FMT_YUV420P9  AV_PIX_FMT_NE(YUV420P9BE , YUV420P9LE)
    #define AV_PIX_FMT_YUV422P9  AV_PIX_FMT_NE(YUV422P9BE , YUV422P9LE)
    #define AV_PIX_FMT_YUV444P9  AV_PIX_FMT_NE(YUV444P9BE , YUV444P9LE)
    #define AV_PIX_FMT_YUV420P10 AV_PIX_FMT_NE(YUV420P10BE, YUV420P10LE)
    #define AV_PIX_FMT_YUV422P10 AV_PIX_FMT_NE(YUV422P10BE, YUV422P10LE)
    #define AV_PIX_FMT_YUV440P10 AV_PIX_FMT_NE(YUV440P10BE, YUV440P10LE)
    #define AV_PIX_FMT_YUV444P10 AV_PIX_FMT_NE(YUV444P10BE, YUV444P10LE)
    #define AV_PIX_FMT_YUV420P12 AV_PIX_FMT_NE(YUV420P12BE, YUV420P12LE)
    #define AV_PIX_FMT_YUV422P12 AV_PIX_FMT_NE(YUV422P12BE, YUV422P12LE)
    #define AV_PIX_FMT_YUV440P12 AV_PIX_FMT_NE(YUV440P12BE, YUV440P12LE)
    #define AV_PIX_FMT_YUV444P12 AV_PIX_FMT_NE(YUV444P12BE, YUV444P12LE)
    #define AV_PIX_FMT_YUV420P14 AV_PIX_FMT_NE(YUV420P14BE, YUV420P14LE)
    #define AV_PIX_FMT_YUV422P14 AV_PIX_FMT_NE(YUV422P14BE, YUV422P14LE)
    #define AV_PIX_FMT_YUV444P14 AV_PIX_FMT_NE(YUV444P14BE, YUV444P14LE)
    #define AV_PIX_FMT_YUV420P16 AV_PIX_FMT_NE(YUV420P16BE, YUV420P16LE)
    #define AV_PIX_FMT_YUV422P16 AV_PIX_FMT_NE(YUV422P16BE, YUV422P16LE)
    #define AV_PIX_FMT_YUV444P16 AV_PIX_FMT_NE(YUV444P16BE, YUV444P16LE)
    
    #define AV_PIX_FMT_GBRP9     AV_PIX_FMT_NE(GBRP9BE ,    GBRP9LE)
    #define AV_PIX_FMT_GBRP10    AV_PIX_FMT_NE(GBRP10BE,    GBRP10LE)
    #define AV_PIX_FMT_GBRP12    AV_PIX_FMT_NE(GBRP12BE,    GBRP12LE)
    #define AV_PIX_FMT_GBRP14    AV_PIX_FMT_NE(GBRP14BE,    GBRP14LE)
    #define AV_PIX_FMT_GBRP16    AV_PIX_FMT_NE(GBRP16BE,    GBRP16LE)
    #define AV_PIX_FMT_GBRAP12   AV_PIX_FMT_NE(GBRAP12BE,   GBRAP12LE)
    #define AV_PIX_FMT_GBRAP16   AV_PIX_FMT_NE(GBRAP16BE,   GBRAP16LE)
    
    #define AV_PIX_FMT_BAYER_BGGR16 AV_PIX_FMT_NE(BAYER_BGGR16BE,    BAYER_BGGR16LE)
    #define AV_PIX_FMT_BAYER_RGGB16 AV_PIX_FMT_NE(BAYER_RGGB16BE,    BAYER_RGGB16LE)
    #define AV_PIX_FMT_BAYER_GBRG16 AV_PIX_FMT_NE(BAYER_GBRG16BE,    BAYER_GBRG16LE)
    #define AV_PIX_FMT_BAYER_GRBG16 AV_PIX_FMT_NE(BAYER_GRBG16BE,    BAYER_GRBG16LE)
    
    
    #define AV_PIX_FMT_YUVA420P9  AV_PIX_FMT_NE(YUVA420P9BE , YUVA420P9LE)
    #define AV_PIX_FMT_YUVA422P9  AV_PIX_FMT_NE(YUVA422P9BE , YUVA422P9LE)
    #define AV_PIX_FMT_YUVA444P9  AV_PIX_FMT_NE(YUVA444P9BE , YUVA444P9LE)
    #define AV_PIX_FMT_YUVA420P10 AV_PIX_FMT_NE(YUVA420P10BE, YUVA420P10LE)
    #define AV_PIX_FMT_YUVA422P10 AV_PIX_FMT_NE(YUVA422P10BE, YUVA422P10LE)
    #define AV_PIX_FMT_YUVA444P10 AV_PIX_FMT_NE(YUVA444P10BE, YUVA444P10LE)
    #define AV_PIX_FMT_YUVA420P16 AV_PIX_FMT_NE(YUVA420P16BE, YUVA420P16LE)
    #define AV_PIX_FMT_YUVA422P16 AV_PIX_FMT_NE(YUVA422P16BE, YUVA422P16LE)
    #define AV_PIX_FMT_YUVA444P16 AV_PIX_FMT_NE(YUVA444P16BE, YUVA444P16LE)
    
    #define AV_PIX_FMT_XYZ12      AV_PIX_FMT_NE(XYZ12BE, XYZ12LE)
    #define AV_PIX_FMT_NV20       AV_PIX_FMT_NE(NV20BE,  NV20LE)
    #define AV_PIX_FMT_AYUV64     AV_PIX_FMT_NE(AYUV64BE, AYUV64LE)
    #define AV_PIX_FMT_P010       AV_PIX_FMT_NE(P010BE,  P010LE)
    
    /**
      * Chromaticity coordinates of the source primaries.
      */
    enum AVColorPrimaries {
        AVCOL_PRI_RESERVED0   = 0,
        AVCOL_PRI_BT709       = 1,  ///< also ITU-R BT1361 / IEC 61966-2-4 / SMPTE RP177 Annex B
        AVCOL_PRI_UNSPECIFIED = 2,
        AVCOL_PRI_RESERVED    = 3,
        AVCOL_PRI_BT470M      = 4,  ///< also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
    
        AVCOL_PRI_BT470BG     = 5,  ///< also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
        AVCOL_PRI_SMPTE170M   = 6,  ///< also ITU-R BT601-6 525 / ITU-R BT1358 525 / ITU-R BT1700 NTSC
        AVCOL_PRI_SMPTE240M   = 7,  ///< functionally identical to above
        AVCOL_PRI_FILM        = 8,  ///< colour filters using Illuminant C
        AVCOL_PRI_BT2020      = 9,  ///< ITU-R BT2020
        AVCOL_PRI_SMPTEST428_1= 10, ///< SMPTE ST 428-1 (CIE 1931 XYZ)
        AVCOL_PRI_NB,               ///< Not part of ABI
    };
    
    /**
     * Color Transfer Characteristic.
     */
    enum AVColorTransferCharacteristic {
        AVCOL_TRC_RESERVED0    = 0,
        AVCOL_TRC_BT709        = 1,  ///< also ITU-R BT1361
        AVCOL_TRC_UNSPECIFIED  = 2,
        AVCOL_TRC_RESERVED     = 3,
        AVCOL_TRC_GAMMA22      = 4,  ///< also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
        AVCOL_TRC_GAMMA28      = 5,  ///< also ITU-R BT470BG
        AVCOL_TRC_SMPTE170M    = 6,  ///< also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
        AVCOL_TRC_SMPTE240M    = 7,
        AVCOL_TRC_LINEAR       = 8,  ///< "Linear transfer characteristics"
        AVCOL_TRC_LOG          = 9,  ///< "Logarithmic transfer characteristic (100:1 range)"
        AVCOL_TRC_LOG_SQRT     = 10, ///< "Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
        AVCOL_TRC_IEC61966_2_4 = 11, ///< IEC 61966-2-4
        AVCOL_TRC_BT1361_ECG   = 12, ///< ITU-R BT1361 Extended Colour Gamut
        AVCOL_TRC_IEC61966_2_1 = 13, ///< IEC 61966-2-1 (sRGB or sYCC)
        AVCOL_TRC_BT2020_10    = 14, ///< ITU-R BT2020 for 10 bit system
        AVCOL_TRC_BT2020_12    = 15, ///< ITU-R BT2020 for 12 bit system
        AVCOL_TRC_SMPTEST2084  = 16, ///< SMPTE ST 2084 for 10, 12, 14 and 16 bit systems
        AVCOL_TRC_SMPTEST428_1 = 17, ///< SMPTE ST 428-1
        AVCOL_TRC_NB,                ///< Not part of ABI
    };
    
    /**
     * YUV colorspace type.
     */
    enum AVColorSpace {
        AVCOL_SPC_RGB         = 0,  ///< order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
        AVCOL_SPC_BT709       = 1,  ///< also ITU-R BT1361 / IEC 61966-2-4 xvYCC709 / SMPTE RP177 Annex B
        AVCOL_SPC_UNSPECIFIED = 2,
        AVCOL_SPC_RESERVED    = 3,
        AVCOL_SPC_FCC         = 4,  ///< FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
        AVCOL_SPC_BT470BG     = 5,  ///< also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601
        AVCOL_SPC_SMPTE170M   = 6,  ///< also ITU-R BT601-6 525 / ITU-R BT1358 525 / ITU-R BT1700 NTSC / functionally identical to above
        AVCOL_SPC_SMPTE240M   = 7,
        AVCOL_SPC_YCOCG       = 8,  ///< Used by Dirac / VC-2 and H.264 FRext, see ITU-T SG16
        AVCOL_SPC_BT2020_NCL  = 9,  ///< ITU-R BT2020 non-constant luminance system
        AVCOL_SPC_BT2020_CL   = 10, ///< ITU-R BT2020 constant luminance system
        AVCOL_SPC_NB,               ///< Not part of ABI
    };
    #define AVCOL_SPC_YCGCO AVCOL_SPC_YCOCG
    
    
    /**
     * MPEG vs JPEG YUV range.
     */
    enum AVColorRange {
        AVCOL_RANGE_UNSPECIFIED = 0,
        AVCOL_RANGE_MPEG        = 1, ///< the normal 219*2^(n-8) "MPEG" YUV ranges
        AVCOL_RANGE_JPEG        = 2, ///< the normal     2^n-1   "JPEG" YUV ranges
        AVCOL_RANGE_NB,              ///< Not part of ABI
    };
    
    /**
     * Location of chroma samples.
     *
     * Illustration showing the location of the first (top left) chroma sample of the
     * image, the left shows only luma, the right
     * shows the location of the chroma sample, the 2 could be imagined to overlay
     * each other but are drawn separately due to limitations of ASCII
     *
     *                1st 2nd       1st 2nd horizontal luma sample positions
     *                 v   v         v   v
     *                 ______        ______
     *1st luma line > |X   X ...    |3 4 X ...     X are luma samples,
     *                |             |1 2           1-6 are possible chroma positions
     *2nd luma line > |X   X ...    |5 6 X ...     0 is undefined/unknown position
     */
    enum AVChromaLocation {
        AVCHROMA_LOC_UNSPECIFIED = 0,
        AVCHROMA_LOC_LEFT        = 1, ///< mpeg2/4 4:2:0, h264 default for 4:2:0
        AVCHROMA_LOC_CENTER      = 2, ///< mpeg1 4:2:0, jpeg 4:2:0, h263 4:2:0
        AVCHROMA_LOC_TOPLEFT     = 3, ///< ITU-R 601, SMPTE 274M 296M S314M(DV 4:1:1), mpeg2 4:2:2
        AVCHROMA_LOC_TOP         = 4,
        AVCHROMA_LOC_BOTTOMLEFT  = 5,
        AVCHROMA_LOC_BOTTOM      = 6,
        AVCHROMA_LOC_NB,              ///< Not part of ABI
    };
    
    #endif /* AVUTIL_PIXFMT_H */
    



    Keep it simple!
    作者:N3verL4nd
    知识共享,欢迎转载。
  • 相关阅读:
    星空Password
    股票交易
    【1】博客目录
    事务
    C#基础索引
    C# String
    MSIL
    Evaluation Stack
    Spring源码编译以及导入Intellij IDEA的操作步骤
    WebFlux响应式编程简单示例
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/5834641.html
Copyright © 2011-2022 走看看