To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 36015 | Accepted: 18897 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the
sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines).
These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15果将每一个二维矩阵的每一列的数据总和,按照列的序号分别对应地保存到一个一维数组中,就转化成一维,其性质跟求最大子段和一样,而在这里只不过要进行多次这样的计算而已 ^ -^ 经典Dynamic programming 中的经典!!!!
#include <iostream> #include <cstring> using namespace std; #pragma warning(disable : 4996) const int MAXN = 105; int arr[MAXN][MAXN], dp[MAXN]; int n; int DP() { int thissum, maxsum; thissum = maxsum = 0; for (int i = 1; i <= n; i++) { thissum += dp[i]; if(thissum > maxsum) { maxsum = thissum; } if(thissum < 0) { thissum = 0; } } return maxsum; } int main() { freopen("in.txt", "r", stdin); int i, j, k; int sum, ans; while(scanf("%d", &n) != EOF) { for(i = 1; i <= n; i++) { for(j = 1; j <= n; j++) { scanf("%d", &arr[i][j]); } } ans = 0; for (int i = 1; i <= n; i++) { memset(dp, 0, sizeof(dp)); for (int j = i; j <= n; j++) { for (k = 1; k <= n; k++) { dp[k] += arr[j][k]; } sum = DP(); if(sum > ans) { ans = sum; } } } printf("%d\n", ans); } }