zoukankan      html  css  js  c++  java
  • 后缀数组之倍增法

    还没搞懂,汗。。先保存下资料以后有时间再仔细研究吧。
    后缀数组资料1:http://www.cppblog.com/superKiki/archive/2010/05/15/115421.html
                   资料2:http://blog.sina.com.cn/s/blog_69fd58a10100za77.html
    后缀数组就是将字符串所有后缀排序后的数组,设字符串为S,令后缀Suffix(i)表示S[i..len(S)]。用两个数组记录所有后缀的排序结果:
    • Rank[i]记录Suffix(i)排序后的序号,即Suffix[i]在所有后缀中是第Rank[i]小的后缀
    • SA[i]记录第i位后缀的首字母位置,即Suffix[SA[i]]在所有后缀中是第i小的后缀
    然后就是怎么快速求所有后缀的顺序了,其中的关键是如何减少两个后缀比较的复杂度
    方法是倍增法,定义一个字符串的k-前缀为该字符串的前k个字符组成的串,关于在k-后缀上的定义Suffix(k,i)、SA[k,i]和Rank[k,i]类似于前,则有
    • 若Rank[k,i]=Rank[k,j]且Rank[k,i+k]=Rank[k,j+k],则Suffix[2k,i]=Suffix[2k,j]
    • 若Rank[k,i]=Rank[k,j]且Rank[k,i+k]<Rank[k,j+k],则Suffix[2k,i]<Suffix[2k,j]
    • 若Rank[k,i]<Rank[k,j],则Suffix[2k,i]<Suffix[2k,j]
    这样就能在常数时间内比较Suffix(2^k, i)之间的大小,从而对Suffix(2^k,i)进行排序,最后当2^k>n时,Suffix(2^k, i)之间的大小即为所有后缀之间的大小

    于是求出了所有后缀的排序,有什么用呢?主要是用于求它们之间的最长公共前缀(Longest Common Prefix,LCP) 

    令LCP(i,j)为第i小的后缀和第j小的后缀(也就是Suffix(SA[i])和Suffix(SA[j]))的最长公共前缀的长度,则有如下两个性质: 
    1. 对任意i<=k<=j,有LCP(i,j) = min(LCP(i,k),LCP(k,j))
    2. LCP(i,j)=min(i<k<=j)(LCP(k-1,k))
    第一个性质是显然的,它的意义在于可以用来证明第二个性质。第二个性质的意义在于提供了一个将LCP问题转换为RMQ问题的方法:
    令height[i]=LCP(i-1,i),即height[i]代表第i小的后缀与第i-1小的后缀的LCP,则求LCP(i,j)就等于求height[i+1]~height[j]之间的RMQ,套用RMQ算法就可以了,复杂度是预处理O(nlogn),查询O(1)

    然后height的求法要用到另一个数组:令h[i]=height[Rank[i]],即h[i]表示Suffix(i)的height值(同时height[i]就表示Suffix(SA[i])的height值),则有height[i]=h[SA[i]] 
    然后h[i]有个性质:
    • h[i] >= h[i-1]-1
    用这个性质我们在计算h[i]的时候进行后缀比较时只需从第h[i-1]位起比较,从而总的比较的复杂度是O(n),也就是说h数组在O(n)的时间内解决了。求出了h数组,根据关系式height[i]=h[SA[i]]可以在O(n)时间内求出height数组,于是可以在O(n)时间内求出height数组,从而整个LCP问题就解决了。

    然后后缀数组的应用就是利用它的LCP在需要字符串比较时降低复杂度。同时由于后缀数组的有序性可以很方便地使用二分 

    于是总结一下要点: 
    • 利用倍增算法在O(nlogn)的时间内对后缀数组进行排序
    • 利用h数组的性质在O(n)的时间内求出储存排序后相邻后缀间的LCP数的组height
    • 利用LCP的性质将平凡LCP问题转化为height数组上的RMQ问题

    HDOJ1403:http://acm.hdu.edu.cn/showproblem.php?pid=1403
    分析:http://www.cnblogs.com/zhuangli/archive/2008/08/18/1270608.html
    #include <stdlib.h>
    #include <iostream>
    #include <string>
    using namespace std;
    const int maxn=200005;
    int wa[maxn],wb[maxn],wv[maxn],wt[maxn],r[maxn],sa[maxn];
    char str[maxn];
    int cmp(int *r,int a,int b,int l)
    {return r[a]==r[b]&&r[a+l]==r[b+l];}
    void da(int *r,int *sa,int n,int m)
    {
        int i,j,p,*x=wa,*y=wb,*t;
        for(i=0;i<m;i++)wt[i]=0;
        for(i=0;i<n;i++)wt[x[i]=r[i]]++;
        for(i=1;i<m;i++)wt[i]+=wt[i-1];
        for(i=n-1;i>=0;i--)sa[--wt[x[i]]]=i;
        for(j=1,p=1;p<n;j*=2,m=p)
        {
            for(p=0,i=n-j;i<n;i++)y[p++]=i;
            for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
            for(i=0;i<n;i++)wv[i]=x[y[i]];
            for(i=0;i<m;i++)wt[i]=0;
            for(i=0;i<n;i++)wt[wv[i]]++;
            for(i=1;i<m;i++)wt[i]+=wt[i-1];
            for(i=n-1;i>=0;i--)sa[--wt[wv[i]]]=y[i];
            for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
                x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
        }
        return;
    }
    int rank[maxn],height[maxn];
    void calheight(int *r,int *sa,int n)
    {
        int i,j,k=0;
        for(i=1;i<=n;i++)rank[sa[i]]=i;
        for(i=0;i<n;height[rank[i++]]=k)
        for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
        return;
    }
    int main(int argc, char** argv) {
        while(cin>>str)
        {
            int pos=strlen(str);
            str[pos]='$';
            cin>>str+pos+1;
            int n=strlen(str);
            for(int i=0;i<n;i++)r[i]=(int)str[i];
            r[n]=0;
            da(r,sa,n+1,130);;
            calheight(r,sa,n);
            int maxl=0;
            for(int i=2;i<=n;i++)
            {
                int a=sa[i-1],b=sa[i];
                if((a<pos&&b>pos)||(a>pos&&b<pos))
                if(height[i]>maxl)maxl=height[i];
            }
            printf("%d\n",maxl);
    
        }
        return (EXIT_SUCCESS);
    }


    PKU2774(完全可以用HDOJ1403代码AC):http://poj.org/problem?id=2774

    本题是求两字符串的最长公共子串(注意是子串不是子序列),构造出SA,RA和HEIGHT后,答案就是最大的HEIGHT,但这个最大的HEIGHT可能是同一个串中的,所以这个最大的HEIGHT同时要满足sa[i-1]和sa[i]不在同一个串中。

    分析:http://www.cnblogs.com/zgmf_x20a/archive/2008/11/21/1338539.html

  • 相关阅读:
    Taro 自定义组件样式不生效及解决方案
    Taro 实现多行文本溢出省略效果
    taro路由传参this.$router.params获取不到值
    taro版本切换及报错解决
    fabricjs实现图片加备注文字并下载效果
    html2canvas实现DOM导出为图片(入门)
    [Vue warn]: Error in render: "TypeError: Cannot read property 'length' of null"
    svn识别不出修改的文件
    prefer-object-spread
    JAVA学习(一)——基本语法
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/5835037.html
Copyright © 2011-2022 走看看