zoukankan      html  css  js  c++  java
  • hdoj_1385Minimum Transport Cost

    Minimum Transport Cost

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5392    Accepted Submission(s): 1354


    Problem Description
    These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts: 
    The cost of the transportation on the path between these cities, and

    a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.

    You must write a program to find the route which has the minimum cost.
     

    Input
    First is N, number of cities. N = 0 indicates the end of input.

    The data of path cost, city tax, source and destination cities are given in the input, which is of the form:

    a11 a12 ... a1N
    a21 a22 ... a2N
    ...............
    aN1 aN2 ... aNN
    b1 b2 ... bN

    c d
    e f
    ...
    g h

    where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:
     

    Output
    From c to d :
    Path: c-->c1-->......-->ck-->d
    Total cost : ......
    ......

    From e to f :
    Path: e-->e1-->..........-->ek-->f
    Total cost : ......

    Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.

     

    Sample Input
    5 0 3 22 -1 4 3 0 5 -1 -1 22 5 0 9 20 -1 -1 9 0 4 4 -1 20 4 0 5 17 8 3 1 1 3 3 5 2 4 -1 -1 0
     

    Sample Output
    From 1 to 3 : Path: 1-->5-->4-->3 Total cost : 21 From 3 to 5 : Path: 3-->4-->5 Total cost : 16 From 2 to 4 : Path: 2-->1-->5-->4 Total cost : 17
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<map>
    #include<cmath>
    #include<vector>
    #include<algorithm>
    #include<set>
    #include<string>
    #include<queue>
    #include <stack>
    using namespace std;
    #pragma warning(disable : 4996)
    
    const int MAXN = 2000;
    const int INF = 999999;
    int n, s, e;
    int maps[MAXN][MAXN];
    bool visited[MAXN];
    int pre[MAXN];
    int dist[MAXN];
    int values[MAXN];
    vector<int>path;
    
    int cmp(int a, int b, int c) 
    { 
    	int cur = 0, path1[1002] = {0}, path2[1002] = {0}, count1 = 0, count2 = 0; 
    	path1[count1++] = c, path2[count2++] = c;//path1与path2存的是到c点的路径 
    	for(cur = a; cur != pre[cur]; cur = pre[cur]) 
    		path1[count1++] = cur; 
    	for(cur = b; cur != pre[cur]; cur = pre[cur]) 
    		path2[count2++] = cur; 
    	count1--, count2--; 
    	while(count1 != -1 || count2 != -1) 
    	{ 
    		if(path1[count1] > path2[count2]) 
    			return b; 
    		else if(path1[count1] < path2[count2]) 
    			return a; 
    		count1--, count2--; 
    	} 
    	if(count1 == -1) 
    		return a; 
    	else 
    		return b; 
    }
    
    void Dijkstra() //起点,终点
    {
    	int i, j;
    	int minValue, minNode;
    
    	dist[s] = 0;
    	visited[s] = true;
    	for (i = 1; i <= n; i++)
    	{
    		dist[i] = maps[s][i];
    		if(dist[i] == -1)
    		{
    			pre[i] = 0;
    		}
    		else
    		{
    			pre[i] = s;
    			//printf("pre[%d] = %d\n", i, pre[i]);
    			dist[i] += values[i];
    		}
    		//printf("dist[%d] = %d\n", i, dist[i]);
    	}
    	for (i = 1; i <= n; i++)
    	{
    		minValue = INF;
    		minNode = 0;
    		for (j = 1; j <= n; j++)
    		{
    			if(!visited[j] && minValue > dist[j])
    			{
    				minNode = j;
    				minValue = dist[j];
    			}
    		}
    		//printf("j = %d dist[%d] = %d\n", minNode, minNode, minValue);
    		if(minNode == 0)
    		{
    			break;
    		}
    		visited[minNode] = true;
    		for (j = 1; j <= n; j++)
    		{
    			if(!visited[j] && maps[minNode][j] != INF && dist[j] > dist[minNode] + maps[minNode][j] + values[j])
    			{
    				dist[j] = dist[minNode] + maps[minNode][j] + values[j];
    				pre[j] = minNode;
    				//printf("pre[%d] = %d\n", j, pre[j]);
    			}
    			else if(!visited[j] && maps[minNode][j] != INF && dist[j] == dist[minNode] + maps[minNode][j] + values[j])
    			{
    				pre[j] = cmp(pre[j], minNode, j);
    			}
    		}
    	}
    }
    
    void show()
    {
    	int x = e;
    	while (pre[x] != x)
    	{
    		path.push_back(x);
    		x = pre[x];
    	}
    	printf("From %d to %d :\n", s, e);
    	printf("Path: ");
    
    	printf("%d-->", s);
    	for (int i = path.size() - 1; i >= 1; i--)
    	{
    		printf("%d-->", path[i]);
    	}
    	printf("%d\n", path[0]);
    	path.clear();
    
    	printf("Total cost : %d\n", dist[e] - values[e]);
    	printf("\n");
    }
    
    int main()
    {
    	freopen("in.txt", "r", stdin);
    	int x;
    	while (scanf("%d", &n) != EOF)
    	{
    		if(n == 0)
    		{
    			break;
    		}
    		for (int i = 1; i <= n; i++)
    		{
    			for (int j = 1; j <= n; j++)
    			{
    				scanf("%d", &x);
    				if(x == -1 || x == 0)
    				{
    					maps[i][j] = INF;
    				}
    				else
    				{
    					maps[i][j] = x;
    				}
    			}
    		}
    		for (int i = 1; i <= n; i++)
    		{
    			scanf("%d", &values[i]);
    		}
    		while (scanf("%d %d", &s, &e) != EOF)
    		{
    			if(s == -1 && e == -1)
    			{
    				break;
    			}
    			if(s == e)
    			{
    				printf("From %d to %d :\n", s, e);
    				printf("Path: %d\n", s);
    				printf("Total cost : 0\n");
    				printf("\n");
    			}
    			else
    			{
    				memset(visited, false, sizeof(visited));
    				for (int i = 1; i <= n; i++)
    				{
    					pre[i] = i;
    				}
    				Dijkstra();
    				show();
    			}
    
    		}
    	}
    	return 0;
    }


  • 相关阅读:
    Kafka Producer 的缓冲池机制【转】
    【转】kafka如何实现每秒几十万的高并发写入?
    【转】zk和eureka的区别(CAP原则)
    【转】10倍请求压力来袭,你的系统会被击垮吗?
    (转发)深度学习模型压缩与加速理论与实战(一):模型剪枝
    Time Lens: Event-based Video Frame Interpolation
    PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
    Self-Supervised Learning with Swin Transformers
    DashNet: A Hybrid Artificial and Spiking Neural Network for High-speed Object Tracking
    KAIST Multispectral Pedestrian Detection Benchmark
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/5835050.html
Copyright © 2011-2022 走看看