Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 15175 Accepted Submission(s): 6903
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
DFS水题:
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
int path[30];
bool visited[30];
int n;
bool check(int x)
{
if(x<=1) return false;
for(int i=2;i<=sqrt(double(x));i++)
{
if(x % i == 0) return false;
}
return true;
}
void DFS(int x, int y)
{
path[y] = x;
if(y==n&&check(1+path[n]))
{
for(int i=1;i<n;i++)
cout<<path[i]<<" ";
cout<<path[n]<<endl;
}
for(int i=1;i<=n;i++)
{
if(!visited[i]&&check(x+i))
{
visited[i] = true;
DFS(i,y+1);
visited[i] = false;
}
}
}
int main()
{
int m = 1;
while(cin>>n)
{
memset(visited,false,sizeof(visited));
visited[1] = true;
printf("Case %d:\n",m++);
DFS(1,1);
cout<<endl;
}
return 0;
}ZOJ相同题目,TLE。
看来还得剪枝,会宿舍再想想吧
!!!
当N为奇数的时候,无法构成素数环
int main()
{
int m = 1;
while(scanf("%d",&n)!=EOF)
{
memset(visited,false,sizeof(visited));
visited[1] = true;
printf("Case %d:\n",m++);
if(n%2==1) printf("\n");
else
{
DFS(1,1);
printf("\n");
}
}
return 0;
}碉堡了
加几个函数,就能了解深度优先遍历的基本流程了=。=
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <windows.h>
using namespace std;
int path[30];
bool visited[30];
int n;
bool check(int x)
{
if(x<=1) return false;
for(int i=2;i<=sqrt(double(x));i++)
{
if(x % i == 0) return false;
}
return true;
}
void DFS(int x, int y)
{
path[y] = x;
if(y==n&&check(1+path[n]))
{
Sleep(1000);
for(int i=1;i<n;i++)
printf("%d ",path[i]);
printf("%d\n",path[n]);
}
for(int i=2;i<=n;i++)
{
if(!visited[i]&&check(x+i))
{
visited[i] = true;
DFS(i,y+1);
visited[i] = false;
}
}
}
int main()
{
int m = 1;
while(scanf("%d",&n)!=EOF)
{
memset(visited,false,sizeof(visited));
visited[1] = true;
printf("Case %d:\n",m++);
DFS(1,1);
printf("\n");
}
return 0;
}