zoukankan      html  css  js  c++  java
  • 21 特权级与内核安全示例

    参考

    https://blog.51cto.com/13475106/category6.html及狄泰软件相关课程

    Q:通常情况下选择子中的RPL与对应描述符中的DPL相同,那么是否可以取缔RPL?
    RPL是保证内核数据安全的关键要素之一;在内核代码中有决定性作用,绝对不能取缔

    A.获取操作系统的内核

    操作系统-特权级与内核安全示例
    该实验主要通过调用门调用将内核数据进行打印
    操作系统-特权级与内核安全示例操作系统-特权级与内核安全示例
    具体的实现代码如下

    %include "inc.asm"
    
    org 0x9000
    
    jmp ENTRY_SEGMENT
    
    [section .gdt]
    ; GDT definition
    ;                                      段基址,       段界限,             段属性
    GDT_ENTRY            :     Descriptor    0,            0,                0
    CODE32_DESC          :     Descriptor    0,    Code32SegLen - 1,         DA_C + DA_32 + DA_DPL3
    VIDEO_DESC           :     Descriptor 0xB8000,     0x07FFF,              DA_DRWA + DA_32 + DA_DPL3
    DATA32_KERNEL_DESC   :     Descriptor    0,    Data32KernelSegLen - 1,   DA_DRW + DA_32 + DA_DPL0  
    DATA32_USER_DESC     :     Descriptor    0,    Data32UserSegLen - 1,     DA_DRW + DA_32 + DA_DPL3  
    STACK32_KERNEL_DESC  :     Descriptor    0,     TopOfKernelStack32,      DA_DRW + DA_32 + DA_DPL0
    STACK32_USER_DESC    :     Descriptor    0,     TopOfUserStack32,        DA_DRW + DA_32 + DA_DPL3
    TSS_DESC             :     Descriptor    0,       TSSLen - 1,            DA_386TSS + DA_DPL0
    FUNCTION_DESC        :     Descriptor    0,   FunctionSegLen - 1,        DA_C + DA_32 + DA_DPL0;内核函数段
    ; Call Gate
    ;                                                  选择子,                 偏移,          参数个数,      属性
    FUNC_GETKERNELDATA_DESC :    Gate             FunctionSelector,       GetKernelData,       0,         DA_386CGate + DA_DPL3
    ; GDT end
    
    GdtLen    equ   $ - GDT_ENTRY
    
    GdtPtr:
              dw   GdtLen - 1
              dd   0
    
    ; GDT Selector
    Code32Selector         equ (0x0001 << 3) + SA_TIG + SA_RPL3
    VideoSelector          equ (0x0002 << 3) + SA_TIG + SA_RPL3
    KernelData32Selector   equ (0x0003 << 3) + SA_TIG + SA_RPL0
    UserData32Selector     equ (0x0004 << 3) + SA_TIG + SA_RPL3
    KernelStack32Selector  equ (0x0005 << 3) + SA_TIG + SA_RPL0
    UserStack32Selector    equ (0x0006 << 3) + SA_TIG + SA_RPL3
    TSSSelector            equ (0x0007 << 3) + SA_TIG + SA_RPL0
    FunctionSelector       equ (0x0008 << 3) + SA_TIG + SA_RPL0
    ; Gate Selector
    GetKernelDataSelector  equ (0x0009 << 3) + SA_TIG + SA_RPL3
    ; end of [section .gdt]
    
    TopOfStack16    equ 0x7c00
    
    [section .s16]
    [bits 16]
    ENTRY_SEGMENT:
        mov ax, cs
        mov ds, ax
        mov es, ax
        mov ss, ax
        mov sp, TopOfStack16
    
        ; initialize GDT for 32 bits code segment
        mov esi, CODE32_SEGMENT
        mov edi, CODE32_DESC
    
        call InitDescItem
    
        mov esi, DATA32_KERNEL_SEGMENT
        mov edi, DATA32_KERNEL_DESC
    
        call InitDescItem
    
        mov esi, DATA32_USER_SEGMENT
        mov edi, DATA32_USER_DESC
    
        call InitDescItem
    
        mov esi, STACK32_KERNEL_SEGMENT
        mov edi, STACK32_KERNEL_DESC
    
        call InitDescItem
    
        mov esi, STACK32_USER_SEGMENT
        mov edi, STACK32_USER_DESC
    
        call InitDescItem
    
        mov esi, FUNCTION_SEGMENT
        mov edi, FUNCTION_DESC
    
        call InitDescItem
    
        mov esi, TSS_SEGMENT
        mov edi, TSS_DESC
    
        call InitDescItem
    
        ; initialize GDT pointer struct
        mov eax, 0
        mov ax, ds
        shl eax, 4
        add eax, GDT_ENTRY
        mov dword [GdtPtr + 2], eax
    
        ; 1. load GDT
        lgdt [GdtPtr]
    
        ; 2. close interrupt
        cli 
    
        ; 3. open A20
        in al, 0x92
        or al, 00000010b
        out 0x92, al
    
        ; 4. enter protect mode
        mov eax, cr0
        or eax, 0x01
        mov cr0, eax
    
        ; 5. load TSS
        mov ax, TSSSelector
        ltr ax
    
        ; 6. jump to 32 bits code
        ;jmp word Code32Selector : 0
        push UserStack32Selector
        push TopOfUserStack32
        push Code32Selector    
        push 0                 
        retf
    
    ; esi    --> code segment label
    ; edi    --> descriptor label
    InitDescItem:
        push eax
    
        mov eax, 0
        mov ax, cs
        shl eax, 4
        add eax, esi
        mov word [edi + 2], ax
        shr eax, 16
        mov byte [edi + 4], al
        mov byte [edi + 7], ah
    
        pop eax
    
        ret
    
    [section .kdat]
    [bits 32]
    DATA32_KERNEL_SEGMENT:
        KDAT               db  "Kernel Data", 0
        KDAT_LEN           equ $ - KDAT
        KDAT_OFFSET        equ KDAT - $$
    
    Data32KernelSegLen equ $ - DATA32_KERNEL_SEGMENT
    
    [section .udat]
    [bits 32]
    DATA32_USER_SEGMENT:
        UDAT               times 16 db 0
        UDAT_LEN           equ $ - UDAT
        UDAT_OFFSET        equ UDAT - $$
    
    Data32UserSegLen equ $ - DATA32_USER_SEGMENT
    
    [section .tss]
    [bits 32]
    TSS_SEGMENT:
            dd    0
            dd    TopOfKernelStack32      ; 0
            dd    KernelStack32Selector   ;
            dd    0                       ; 1
            dd    0                       ;
            dd    0                       ; 2
            dd    0                       ;
            times 4 * 18 dd 0
            dw    0
            dw    $ - TSS_SEGMENT + 2
            db    0xFF
    
    TSSLen    equ    $ - TSS_SEGMENT
    
    [section .s32]
    [bits 32]
    CODE32_SEGMENT:
        mov ax, VideoSelector
        mov gs, ax
    
        mov ax, UserData32Selector
        mov es, ax
    
        mov di, UDAT_OFFSET
    
        call GetKernelDataSelector : 0
    
        mov ax, UserData32Selector   ; eip ==> 0x17
        mov ds, ax
    
        mov ebp, UDAT_OFFSET
        mov bx, 0x0C
        mov dh, 12
        mov dl, 33
    
        call PrintString
    
        jmp $
    
    ; ds:ebp    --> string address
    ; bx        --> attribute
    ; dx        --> dh : row, dl : col
    PrintString:
        push ebp
        push eax
        push edi
        push cx
        push dx
    
    print:
        mov cl, [ds:ebp]
        cmp cl, 0
        je end
        mov eax, 80
        mul dh
        add al, dl
        shl eax, 1
        mov edi, eax
        mov ah, bl
        mov al, cl
        mov [gs:edi], ax
        inc ebp
        inc dl
        jmp print
    
    end:
        pop dx
        pop cx
        pop edi
        pop eax
        pop ebp
    
        ret
    
    Code32SegLen    equ    $ - CODE32_SEGMENT
    
    [section .func]
    [bits 32]
    FUNCTION_SEGMENT:
    
    ; es:di --> data buffer 
    GetKernelDataFunc:  
        mov ax, KernelData32Selector
        mov ds, ax
    
        mov si, KDAT_OFFSET
    
        mov cx, KDAT_LEN
    
        call KMemCpy
    
        retf
    
    ; ds:si --> source
    ; es:di --> destination
    ; cx    --> length
    KMemCpy:
        cmp si, di
        ja btoe
        add si, cx
        add di, cx
        dec si
        dec di
        jmp etob
    btoe:
        cmp cx, 0
        jz done
        mov al, [ds:si]
        mov byte [es:di], al
        inc si
        inc di
        dec cx
        jmp btoe
    etob: 
        cmp cx, 0
        jz done
        mov al, [ds:si]
        mov byte [es:di], al
        dec si
        dec di
        dec cx
        jmp etob
    done:   
        ret   
    
    GetKernelData    equ   GetKernelDataFunc - $$
    FunctionSegLen    equ   $ - FUNCTION_SEGMENT
    
    [section .kgs]
    [bits 32]
    STACK32_KERNEL_SEGMENT:
        times 256 db 0
    
    Stack32KernelSegLen equ $ - STACK32_KERNEL_SEGMENT
    TopOfKernelStack32  equ Stack32KernelSegLen - 1
    
    [section .ugs]
    [bits 32]
    STACK32_USER_SEGMENT:
        times 256 db 0c
    
    Stack32UserSegLen equ $ - STACK32_USER_SEGMENT
    TopOfUserStack32  equ Stack32UserSegLen - 1
    

    实现结果
    操作系统-特权级与内核安全示例
    从结果中可以看到内核数据被用户进行了拷贝,导致内核数据不安全

    B.对上述出现的错误进行改进

    初步的解决方法-提出一个检查函数
    1.获取段寄存器中RPL的值
    2.判断RPL的值是否为SA_RPL0;true则为检查通过,可以继续访问数据,如果为false,特权级较低,出发异常
    具体实现是在[section .func] [bits 32]中定义一个检查函数,并在拷贝之前将其进行调用,对RPL的值进行判断
    代码如下:

    [section .func]
    [bits 32]
    FUNCTION_SEGMENT:
    
    ; es:di --> data buffer 
    GetKernelDataFunc:  
        mov cx, [esp + 4]
        and cx, 0x0003
        mov ax, es
        and ax, 0xFFFC
        or  ax, cx
        mov es, ax
    
        mov ax, KernelData32Selector
        mov ds, ax
    
        mov si, KDAT_OFFSET
    
        mov cx, KDAT_LEN
    
        call KMemCpy
    
        retf
    
    ; ds:si --> source
    ; es:di --> destination
    ; cx    --> length
    KMemCpy:
        mov ax, es
    
        call CheckRPL;进行调用
    
        cmp si, di
        ja btoe
        add si, cx
        add di, cx
        dec si
        dec di
        jmp etob
    btoe:
        cmp cx, 0
        jz done
        mov al, [ds:si]
        mov byte [es:di], al
        inc si
        inc di
        dec cx
        jmp btoe
    etob: 
        cmp cx, 0
        jz done
        mov al, [ds:si]
        mov byte [es:di], al
        dec si
        dec di
        dec cx
        jmp etob
    done:   
        ret   
    
    ; ax --> selector value
    ;检查函数
    CheckRPL:
        and ax, 0x0003;进行与操作
        cmp ax, SA_RPL0;进行比较操作
        jz valid;进行判断跳转
    
        mov ax, 0
        mov fs, ax
        mov byte [fs:0], 0;触发异常
    

    代码运行结果
    操作系统-特权级与内核安全示例
    从运行结果可以看出,代码没有对内核数据进行拷贝,同时检查函数起到作用, 对RPL的值进行判断,并触发异常进行打印。但是对用户的选择子RPL的值进行修改伪造,将其改为0,又可以将内核数据进行拷贝。

    C.用户程序可以通过伪造的选择子中的RPL的值,从而绕开安全检查的机制,在这里需要提出新的解决方案

    1.在栈中获取函数远调用前CS寄存器的值(请求者)
    2.从之前CS寄存器的值获取RPL
    3.用RPL更新到数据缓冲区对应的段寄存器中
    4.实验检查函数CheckRPL对段寄存器进行安全检查
    操作系统-特权级与内核安全示例
    代码:

    %include "inc.asm"
    
    org 0x9000
    
    jmp ENTRY_SEGMENT
    
    [section .gdt]
    ; GDT definition
    ;                                      段基址,       段界限,             段属性
    GDT_ENTRY            :     Descriptor    0,            0,                0
    CODE32_DESC          :     Descriptor    0,    Code32SegLen - 1,         DA_C + DA_32 + DA_DPL3
    VIDEO_DESC           :     Descriptor 0xB8000,     0x07FFF,              DA_DRWA + DA_32 + DA_DPL3
    DATA32_KERNEL_DESC   :     Descriptor    0,    Data32KernelSegLen - 1,   DA_DRW + DA_32 + DA_DPL0  
    DATA32_USER_DESC     :     Descriptor    0,    Data32UserSegLen - 1,     DA_DRW + DA_32 + DA_DPL3  
    STACK32_KERNEL_DESC  :     Descriptor    0,     TopOfKernelStack32,      DA_DRW + DA_32 + DA_DPL0
    STACK32_USER_DESC    :     Descriptor    0,     TopOfUserStack32,        DA_DRW + DA_32 + DA_DPL3
    TSS_DESC             :     Descriptor    0,       TSSLen - 1,            DA_386TSS + DA_DPL0
    FUNCTION_DESC        :     Descriptor    0,   FunctionSegLen - 1,        DA_C + DA_32 + DA_DPL0;内核函数段
    ; Call Gate
    ;                                                  选择子,                 偏移,          参数个数,      属性
    FUNC_GETKERNELDATA_DESC :    Gate             FunctionSelector,       GetKernelData,       0,         DA_386CGate + DA_DPL3
    ; GDT end
    
    GdtLen    equ   $ - GDT_ENTRY
    
    GdtPtr:
              dw   GdtLen - 1
              dd   0
    
    ; GDT Selector
    Code32Selector         equ (0x0001 << 3) + SA_TIG + SA_RPL3
    VideoSelector          equ (0x0002 << 3) + SA_TIG + SA_RPL3
    KernelData32Selector   equ (0x0003 << 3) + SA_TIG + SA_RPL0
    UserData32Selector     equ (0x0004 << 3) + SA_TIG + SA_RPL3
    KernelStack32Selector  equ (0x0005 << 3) + SA_TIG + SA_RPL0
    UserStack32Selector    equ (0x0006 << 3) + SA_TIG + SA_RPL3
    TSSSelector            equ (0x0007 << 3) + SA_TIG + SA_RPL0
    FunctionSelector       equ (0x0008 << 3) + SA_TIG + SA_RPL0
    ; Gate Selector
    GetKernelDataSelector  equ (0x0009 << 3) + SA_TIG + SA_RPL3
    ; end of [section .gdt]
    
    TopOfStack16    equ 0x7c00
    
    [section .s16]
    [bits 16]
    ENTRY_SEGMENT:
        mov ax, cs
        mov ds, ax
        mov es, ax
        mov ss, ax
        mov sp, TopOfStack16
    
        ; initialize GDT for 32 bits code segment
        mov esi, CODE32_SEGMENT
        mov edi, CODE32_DESC
    
        call InitDescItem
    
        mov esi, DATA32_KERNEL_SEGMENT
        mov edi, DATA32_KERNEL_DESC
    
        call InitDescItem
    
        mov esi, DATA32_USER_SEGMENT
        mov edi, DATA32_USER_DESC
    
        call InitDescItem
    
        mov esi, STACK32_KERNEL_SEGMENT
        mov edi, STACK32_KERNEL_DESC
    
        call InitDescItem
    
        mov esi, STACK32_USER_SEGMENT
        mov edi, STACK32_USER_DESC
    
        call InitDescItem
    
        mov esi, FUNCTION_SEGMENT
        mov edi, FUNCTION_DESC
    
        call InitDescItem
    
        mov esi, TSS_SEGMENT
        mov edi, TSS_DESC
    
        call InitDescItem
    
        ; initialize GDT pointer struct
        mov eax, 0
        mov ax, ds
        shl eax, 4
        add eax, GDT_ENTRY
        mov dword [GdtPtr + 2], eax
    
        ; 1. load GDT
        lgdt [GdtPtr]
    
        ; 2. close interrupt
        cli 
    
        ; 3. open A20
        in al, 0x92
        or al, 00000010b
        out 0x92, al
    
        ; 4. enter protect mode
        mov eax, cr0
        or eax, 0x01
        mov cr0, eax
    
        ; 5. load TSS
        mov ax, TSSSelector
        ltr ax
    
        ; 6. jump to 32 bits code
        ;jmp word Code32Selector : 0
        push UserStack32Selector
        push TopOfUserStack32
        push Code32Selector    
        push 0                 
        retf
    
    ; esi    --> code segment label
    ; edi    --> descriptor label
    InitDescItem:
        push eax
    
        mov eax, 0
        mov ax, cs
        shl eax, 4
        add eax, esi
        mov word [edi + 2], ax
        shr eax, 16
        mov byte [edi + 4], al
        mov byte [edi + 7], ah
    
        pop eax
    
        ret
    
    [section .kdat]
    [bits 32]
    DATA32_KERNEL_SEGMENT:
        KDAT               db  "Kernel Data", 0
        KDAT_LEN           equ $ - KDAT
        KDAT_OFFSET        equ KDAT - $$
    
    Data32KernelSegLen equ $ - DATA32_KERNEL_SEGMENT
    
    [section .udat]
    [bits 32]
    DATA32_USER_SEGMENT:
        UDAT               times 16 db 0
        UDAT_LEN           equ $ - UDAT
        UDAT_OFFSET        equ UDAT - $$
    
    Data32UserSegLen equ $ - DATA32_USER_SEGMENT
    
    [section .tss]
    [bits 32]
    TSS_SEGMENT:
            dd    0
            dd    TopOfKernelStack32      ; 0
            dd    KernelStack32Selector   ;
            dd    0                       ; 1
            dd    0                       ;
            dd    0                       ; 2
            dd    0                       ;
            times 4 * 18 dd 0
            dw    0
            dw    $ - TSS_SEGMENT + 2
            db    0xFF
    
    TSSLen    equ    $ - TSS_SEGMENT
    
    [section .s32]
    [bits 32]
    CODE32_SEGMENT:
        mov ax, VideoSelector
        mov gs, ax
    
        mov ax, UserData32Selector
        mov es, ax
    
        mov di, UDAT_OFFSET
    
        call GetKernelDataSelector : 0
    
        mov ax, UserData32Selector   ; eip ==> 0x17
        mov ds, ax
    
        mov ebp, UDAT_OFFSET
        mov bx, 0x0C
        mov dh, 12
        mov dl, 33
    
        call PrintString
    
        jmp $
    
    ; ds:ebp    --> string address
    ; bx        --> attribute
    ; dx        --> dh : row, dl : col
    PrintString:
        push ebp
        push eax
        push edi
        push cx
        push dx
    
    print:
        mov cl, [ds:ebp]
        cmp cl, 0
        je end
        mov eax, 80
        mul dh
        add al, dl
        shl eax, 1
        mov edi, eax
        mov ah, bl
        mov al, cl
        mov [gs:edi], ax
        inc ebp
        inc dl
        jmp print
    
    end:
        pop dx
        pop cx
        pop edi
        pop eax
        pop ebp
    
        ret
    
    Code32SegLen    equ    $ - CODE32_SEGMENT
    
    [section .func]
    [bits 32]
    FUNCTION_SEGMENT:
    
    ; es:di --> data buffer 
    GetKernelDataFunc:  
        mov cx, [esp + 4]
        and cx, 0x0003
        mov ax, es
        and ax, 0xFFFC
        or  ax, cx
        mov es, ax
    
        mov ax, KernelData32Selector
        mov ds, ax
    
        mov si, KDAT_OFFSET
    
        mov cx, KDAT_LEN
    
        call KMemCpy
    
        retf
    
    ; ds:si --> source
    ; es:di --> destination
    ; cx    --> length
    KMemCpy:
        mov ax, es
    
        call CheckRPL;进行调用
    
        cmp si, di
        ja btoe
        add si, cx
        add di, cx
        dec si
        dec di
        jmp etob
    btoe:
        cmp cx, 0
        jz done
        mov al, [ds:si]
        mov byte [es:di], al
        inc si
        inc di
        dec cx
        jmp btoe
    etob: 
        cmp cx, 0
        jz done
        mov al, [ds:si]
        mov byte [es:di], al
        dec si
        dec di
        dec cx
        jmp etob
    done:   
        ret   
    
    ; ax --> selector value
    ;检查函数
    CheckRPL:
        and ax, 0x0003;进行与操作
        cmp ax, SA_RPL0;进行比较操作
        jz valid;进行判断跳转
    
        mov ax, 0
        mov fs, ax
        mov byte [fs:0], 0;触发异常
    
    valid:
        ret    
    GetKernelData    equ   GetKernelDataFunc - $$
    FunctionSegLen    equ   $ - FUNCTION_SEGMENT
    
    [section .kgs]
    [bits 32]
    STACK32_KERNEL_SEGMENT:
        times 256 db 0
    
    Stack32KernelSegLen equ $ - STACK32_KERNEL_SEGMENT
    TopOfKernelStack32  equ Stack32KernelSegLen - 1
    
    [section .ugs]
    [bits 32]
    STACK32_USER_SEGMENT:
        times 256 db 0
    
    Stack32UserSegLen equ $ - STACK32_USER_SEGMENT
    TopOfUserStack32  equ Stack32UserSegLen - 1
    

    首先通过反编译在call GetKernelDataSelector : 0跳转处设置断点,接下来对通用寄存器eip寄存器进行查看,由92a8到92af之间的差值为7,可以推断mov ax, UserData32Selector ; eip ==> 0x17,该处是返回地址。同时0x17会入栈,cs也会入栈,对寄存器进行查看,此时cs寄存器为0x0b,接下来对栈顶的6个字节进行查看,发现0x17与cs寄存器都入栈,再继续操作,触发异常,过程如图所示
    操作系统-特权级与内核安全示例操作系统-特权级与内核安全示例操作系统-特权级与内核安全示例操作系统-特权级与内核安全示例

    小结

    1.RPL是保证内核数据安全的关键要素之一
    2.内核代码可通过追踪真实请求者特权级判断操作合法性
    3.进行函数远调用时,真实请求者的选择子就会存储于栈中
    4.通过提取真实特权级能够保证内核数据安全

      

      

      

  • 相关阅读:
    prototype的初步理解
    arguemnts的初步理解
    this的初步理解
    js的内存释放初步理解
    私有作用域的初级理解
    预解释的初级理解
    sublime3的安装和插件之类的
    ionic的常用命令总结以及正式发布的准备
    js的DOM的方法和属性总结
    AynsTask1
  • 原文地址:https://www.cnblogs.com/lh03061238/p/14182513.html
Copyright © 2011-2022 走看看