五大区域:
1)程序计数器(Program Counter Register):当前线程所执行的字节码的行号指示器,字节码解析器的工作是通过改变这个计数器的值,来选取下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能,都需要依赖这个计数器来完成;(私有)
2)Java 虚拟机栈(栈)(Java Virtual Machine Stacks):用于存储局部变量表、操作数栈、动态链接、方法出口等信息;(私有)
3)本地方法栈(Native Method Stack):与虚拟机栈的作用是一样的,只不过虚拟机栈是服务 Java 方法的,而本地方法栈是为虚拟机调用 Native 方法服务的;(私有)
4)Java堆((堆)Java Heap):Java虚拟机中内存最大的一块,是被所有线程共享的,几乎所有的对象实例都在这里分配内存;(共享)
5)方法区(Methed Area):用于存储已被虚拟机加载的类信息、常量、静态变量】即时编译后的代码等数据。(共享)
JVM的内存结构包括五大区域:程序计数器、虚拟机栈、本地方法栈、堆区、方法区。其中程序计数器、虚拟机栈、本地方法栈3个区域随线程而生、随线程而灭,因此这几个区域的内存分配和回收都具备确定性,就不需要过多考虑回收的问题,因为方法结束或者线程结束时,内存自然就跟随着回收了。而Java堆区和方法区则不一样这部分内存的分配和回收是动态的,正是垃圾收集器所需关注的部分。
垃圾收集器在对堆区和方法区进行回收前,首先要确定这些区域的对象哪些可以被回收,哪些暂时还不能回收,这就要用到判断对象是否存活的算法!
判断对象死没死,常见的有两种方法:
1、引用计数法:为每个对象创建一个引用计数,有对象引用时计数器 +1,引用被释放时计数 -1,当计数器为 0 时就可以被回收。它有一个缺点不能解决循环引用的问题;
2、可达性计数法:从 GC Roots 开始向下搜索,搜索所走过的路径称为引用链。当一个对象到 GC Roots 没有任何引用链相连时,则证明此对象是可以被回收的。
问题:
JVM有哪些垃圾回收算法?
回答:
1、标记-清除算法:标记无用对象,然后进行清除回收。
缺点:效率不高,标记和清除循环两遍,对分配的内存来说,往往是连续的比较好,因为这样有利于分配大数据的对象。倘若当前内存中都是小段的内存碎片,会知道需要分配大段内存时,没有可以放置的位置,而触发内存回收。也就是空间不足而导致频繁GC和性能下降。
2、标记-整理算法:标记无用对象,让所有存活的对象都向一端移动,然后直接清除掉端边界以外的内存。
缺点:向一端移动,有太多的小而杂的对象来说,每次移动和计算都是很复杂的过程。因此在使用场景上,就注定限制了标记整理算法的使用不太适合频繁创建和回收对象的内存中。
3、复制算法:按照容量划分两个大小相等的内存区域,当一块用完的时候,将活着的对象复制到另一块上,然后再把已使用的内存空间一次清理掉。
缺点:内存使用率不高,只有原来的一半。
4、分代算法:根据对象存活周期的不同将内存划分为几块,一般是新生代和老年代,新生代基本采用复制算法,老年代采用标记整理算法。
问题:
栈堆的区别?
回答:
功能方面:堆是用来存放对象的,栈是用来执行程序的。
共享性:堆是线程共享,栈是线程私有的。
空间大小:堆的大小远远大于栈。
问题:
什么是双亲委派模型?
回答之前:
在介绍双亲委派模型之前先说下类加载器。对于任意一个类,都需要由加载它的类加载器和这个类本身一同确立在 JVM 中的唯一性,每一个类加载器,都有一个独立的类名称空间。类加载器就是根据指定全限定名称将 class 文件加载到 JVM 内存,然后再转化为 class 对象。
类加载器分类:
启动类加载器(Bootstrap ClassLoader),是虚拟机自身的一部分,用来加载Java_HOME/lib/目录中的,或者被 -Xbootclasspath 参数所指定的路径中并且被虚拟机识别的类库;
其他类加载器:
扩展类加载器(Extension ClassLoader):负责加载libext目录或Java. ext. dirs系统变量指定的路径中的所有类库;
应用程序类加载器(Application ClassLoader)。负责加载用户类路径(classpath)上的指定类库,我们可以直接使用这个类加载器。一般情况,如果我们没有自定义类加载器默认就是用这个加载器。
回答:
双亲委派模型:如果一个类加载器收到了类加载的请求,它首先不会自己去加载这个类,而是把这个请求委派给父类加载器去完成,每一层的类加载器都是如此,这样所有的加载请求都会被传送到顶层的启动类加载器中,只有当父加载无法完成加载请求(它的搜索范围中没找到所需的类)时,子加载器才会尝试去加载类。