zoukankan      html  css  js  c++  java
  • 莫比乌斯反演

    数论函数

    数论函数指定义域为正整数集,值域是整数集的函数

    积性函数和完全积性函数

    对于一个数论函数(f),当(gcd(a,b)=1)时,(f(ab)=f(a)f(b)),则称其为积性函数

    对于一个数论函数(f),若 (f(ab)=f(a)f(b)),则称其为完全积性函数

    莫比乌斯函数

    [mu(n) = egin{cases} 1 qquad &n=1 \ (-1)^k qquad &n=prodlimits_{i=1}^{k} p_i \ 0 qquad & ext{otherwise} end{cases} ]

    莫比乌斯函数是积性函数

    狄利克雷卷积

    [h(n)=sum_{d mid n}f(d)g(frac{n}{d}) ]

    满足结合律,交换律

    存在单位元(f imes epsilon= f)(epsilon(n)=[n=1]=egin{cases}1&n=1\0&n e1end{cases})

    存在逆元,对于每个(f(1) e 0)的函数(f),都存在函数(g),使得(f imes g= epsilon)

    一些卷积的结论

    [varphi imes 1=id ]

    [μ imes id=varphi ]

    [μ imes 1=epsilon ]

    [epsilon imes1 =1 ]

    莫比乌斯反演

    (f=g imes 1iff g=f imes μ)

    证明:

    [f=f imes epsilon=f imes mu imes 1=g imes 1 iff g=f imes μ ]

    数论分块

    若要求(sumlimits_{i=1}^{n}lfloorfrac{n}{i} floor),可以用数论分块实现(O(sqrt n))计算

    (code:)

    for(int l=1,r;l<=n;l=r+1)
        r=n/(n/l),ans+=(r-l+1)*(n/l);
    

    ZAP-Queries

    (sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}[gcd(i,j)=k] (n leqslant m))

    [egin{aligned} &sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}[gcd(i,j)=k] \ =&sum_{i=1}^{lfloor frac{n}{k} floor}sum_{j=1}^{lfloor frac{m}{k} floor}[gcd(i,j)=1] \ =&sum_{i=1}^{lfloor frac{n}{k} floor}sum_{j=1}^{lfloor frac{m}{k} floor}epsilon(gcd(i,j)) \ =&sum_{i=1}^{lfloor frac{n}{k} floor}sum_{j=1}^{lfloor frac{m}{k} floor}sum_{d mid i wedge d mid j}mu(d)\ =&sum_{d=1}^{lfloor frac{n}{k} floor}mu(d) sum_{i=1 wedge d mid i}^{lfloor frac{n}{k} floor}sum_{j=1 wedge d mid j}^{lfloor frac{m}{k} floor}1\ =&sum_{d=1}^{lfloor frac{n}{k} floor}mu(d) (sum_{i=1 wedge d mid i}^{lfloor frac{n}{k} floor}1)(sum_{j=1 wedge d mid j}^{lfloor frac{m}{k} floor}1)\=&sum_{d=1}^{lfloor frac{n}{k} floor}mu(d) lfloor frac{n}{kd} floor lfloor frac{m}{kd} floorend{aligned} ]

    约数个数和

    (sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}d(ij) (n leqslant m))

    [ egin{aligned} &sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}d(ij) \ =&sumlimits_{i=1}^nsumlimits_{j=1}^msumlimits_{xmid i}sumlimits_{ymid j} [gcd(x,y)=1] \ =&sumlimits_{i=1}^nsumlimits_{j=1}^msumlimits_{xmid i}sumlimits_{ymid j}epsilon(gcd(x,y)) \ =&sumlimits_{i=1}^nsumlimits_{j=1}^msumlimits_{xmid i}sumlimits_{ymid j}sum_{d mid x wedge d mid y}mu(d) \ =&sum_{d=1}^nmu(d)sumlimits_{i=1}^nsumlimits_{j=1}^msumlimits_{xmid i}sumlimits_{ymid j}[d mid x wedge d mid y]\ =&sum_{d=1}^nmu(d)sum_{x=1}^{lfloor frac{n}{d} floor}sum_{y=1}^{lfloor frac{m}{d} floor}lfloorfrac{n}{dx} floorlfloorfrac{m}{dy} floor\ =&sum_{d=1}^nmu(d)sum_{x=1}^{lfloor frac{n}{d} floor}lfloorfrac{n}{dx} floorsum_{y=1}^{lfloor frac{m}{d} floor}lfloorfrac{m}{dy} floor\ =&sum_{d=1}^nmu(d)f(lfloorfrac{n}{d} floor)f(lfloorfrac{m}{d} floor)\ &f(n)=sum_{i=1}^n lfloorfrac{n}{i} floor end{aligned} ]

    Crash的数字表格 / JZPTAB

    (sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}lcm(i,j) (n leqslant m))

    [ egin{aligned} &sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}lcm(i,j) \ =&sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}frac{ij}{gcd(i,j)} \ =&sumlimits_{d=1}^{n}sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}frac{ij}{d}[gcd(i,j)=d] \ =&sumlimits_{d=1}^{n}sum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{m}{d} floor}sum_{k mid i wedge k mid j}mu(k)ijd \ =&sumlimits_{d=1}^{n}dsum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{m}{d} floor}sum_{k=1}^{lfloor frac{n}{d} floor}mu(k)ij[k mid i wedge k mid j] \ =&sumlimits_{d=1}^{n}dsum_{k=1}^{lfloor frac{n}{d} floor}mu(k)sum_{i=1}^{lfloor frac{n}{d} floor}i[k mid i]sum_{j=1}^{lfloor frac{m}{d} floor}j[k mid j] \ =&sumlimits_{d=1}^{n}dsum_{k=1}^{lfloor frac{n}{d} floor}mu(k)k^2sum_{i=1}^{lfloor frac{n}{kd} floor}isum_{j=1}^{lfloor frac{m}{kd} floor}j \ =&sumlimits_{d=1}^{n}df(lfloor frac{n}{d} floor,lfloor frac{m}{d} floor) \ &f(n,m)=sum_{k=1}^{n}mu(k)k^2sum_{i=1}^{lfloor frac{n}{k} floor}isum_{j=1}^{lfloor frac{m}{k} floor}j \ end{aligned} ]

    数字表格

    (prodlimits_{i=1}^{n}prodlimits_{j=1}^{m}f(gcd(i,j)) (n leqslant m)),其中(f)为斐波那契数列

    [ egin{aligned} &prodlimits_{i=1}^{n}prodlimits_{j=1}^{m}f(gcd(i,j)) \ =&prodlimits_{d=1}^{n}f(d)^{sumlimits_{i=1}^{n}sumlimits_{j=1}^{m}[gcd(i,j)=d]} \=&prodlimits_{d=1}^{n}f(d)^{sumlimits_{i=1}^{lfloor frac{n}{d} floor}sumlimits_{j=1}^{lfloor frac{m}{d} floor}[gcd(i,j)=1]} \=&prodlimits_{d=1}^{n}f(d)^{sumlimits_{i=1}^{lfloor frac{n}{d} floor}sumlimits_{j=1}^{lfloor frac{m}{d} floor}sumlimits_{k mid i wedge k mid j}mu(k)} \=&prodlimits_{d=1}^{n}f(d)^{sumlimits_{k=1}^{lfloor frac{n}{d} floor}mu(k)sumlimits_{i=1}^{lfloor frac{n}{d} floor}sumlimits_{j=1}^{lfloor frac{m}{d} floor}[k mid i wedge k mid j]} \=&prodlimits_{d=1}^{n}f(d)^{sumlimits_{k=1}^{lfloor frac{n}{d} floor}mu(k)lfloor frac{n}{kd} floor lfloor frac{m}{kd} floor} \=&prodlimits_{d=1}^{n}prodlimits_{k=1}^{lfloor frac{n}{d} floor}f(d)^{mu(k)lfloor frac{n}{kd} floor lfloor frac{m}{kd} floor} \=&prodlimits_{T=1}^{n}left(prodlimits_{d mid T}f(d)^{mu(frac{T}{d})} ight)^{lfloor frac{n}{T} floor lfloor frac{m}{T} floor} \end{aligned} ]

  • 相关阅读:
    【零基础】极星9.5套利详解
    【零基础】极星9.3资金字段详解
    【零基础】易盛9.0API入门三:下单并查询订单状态
    【零基础】极星量化扩展一:如何做跨合约的交易
    【零基础】极星9.3止盈止损用法详解
    【零基础】极星9.3几种套利的说明
    【零基础】MT4量化入门三:写一个双均线指标
    概率与似然
    PCA的计算方法
    隐藏节点数的选择
  • 原文地址:https://www.cnblogs.com/lhm-/p/12273569.html
Copyright © 2011-2022 走看看