zoukankan      html  css  js  c++  java
  • Federated Recommondation

    Federated Recommondation

    1. Introduction

    Federatedrec aims to address recommondation problems such as rating prediction and item ranking under federated learning senario. It includes implementation of a number of popular recommondation algorithms based on FATE library. Such as federated fm, federated mf, federated svd etc.

    2. Background

    With laws related to the protection of data security and privacy, such as General Data Protection Regulation (GDPR), coming out in recent years, data collection becomes more difficult. And users give more attention to the problem of data privacy. Directly sharing user data between companies (organizaiotns) is undesired. Such data silo issues commonly exist in recommender systems.

    FedRec addresses the data silo issue and builds centralized recommender without compromising privacy and security. FedRecLib includes implementation of a suite of state-of-the-art recommondation algorithms based on FATE library.

    3. Algorithms list:

    1. Hetero FM(factorization machine)

    Build hetero factorization machine module through multiple parties.

    • Corresponding module name: HeteroFM
    • Data Input: Input DTable.
    • Model Output: Factorization Machine model.
    2. Homo-FM

    Build homo factorization machine module through multiple parties.

    • Corresponding module name: HomoFM
    • Data Input: Input DTable.
    • Model Output: Factorization Machine model.
    3. Hetero MF(matrix factorization)

    Build hetero matrix factorization module through multiple parties.

    • Corresponding module name: HeteroMF
    • Data Input: Input DTable of user-item rating matrix data.
    • Model Output: Matrix Factorization model.
    4. Hetero SVD

    Build hetero SVD module through multiple parties.

    • Corresponding module name: HeteroSVD
    • Data Input: Input DTable of user-item rating matrix data.
    • Model Output: Hetero SVD model.
    5. Hetero SVD++

    Build hetero SVD++ module through multiple parties.

    • Corresponding module name: HeteroSVDPP
    • Data Input: Input DTable of user-item rating matrix data.
    • Model Output: Hetero SVD++ model.
    6. Hetero GMF

    Build hetero GMF module through multiple parties.

    • Corresponding module name: HeteroGMF
    • Data Input: Input DTable of user-item rating matrix data(using positive data only).
    • Model Output: Hetero GMF model.

    More available algorithms are coming soon.

    转自https://github.com/FederatedAI/FATE

  • 相关阅读:
    《博客园美化》添加雪花/修改icon
    js获取开始年与结束年之间的年份
    《博客园美化》为您的博客增加一个萌萌的看板娘吧
    JS对比时间大小
    同域名下两个子级域名共享cookie
    input输入框禁止显示历史记录
    C# 操作符 << 与 >>
    如何在IIS上发布网站
    Sql 插入操作时返回当前新增的Id
    JS Cookie操作
  • 原文地址:https://www.cnblogs.com/lhwblogs/p/14729564.html
Copyright © 2011-2022 走看看