zoukankan      html  css  js  c++  java
  • Federated Recommondation

    Federated Recommondation

    1. Introduction

    Federatedrec aims to address recommondation problems such as rating prediction and item ranking under federated learning senario. It includes implementation of a number of popular recommondation algorithms based on FATE library. Such as federated fm, federated mf, federated svd etc.

    2. Background

    With laws related to the protection of data security and privacy, such as General Data Protection Regulation (GDPR), coming out in recent years, data collection becomes more difficult. And users give more attention to the problem of data privacy. Directly sharing user data between companies (organizaiotns) is undesired. Such data silo issues commonly exist in recommender systems.

    FedRec addresses the data silo issue and builds centralized recommender without compromising privacy and security. FedRecLib includes implementation of a suite of state-of-the-art recommondation algorithms based on FATE library.

    3. Algorithms list:

    1. Hetero FM(factorization machine)

    Build hetero factorization machine module through multiple parties.

    • Corresponding module name: HeteroFM
    • Data Input: Input DTable.
    • Model Output: Factorization Machine model.
    2. Homo-FM

    Build homo factorization machine module through multiple parties.

    • Corresponding module name: HomoFM
    • Data Input: Input DTable.
    • Model Output: Factorization Machine model.
    3. Hetero MF(matrix factorization)

    Build hetero matrix factorization module through multiple parties.

    • Corresponding module name: HeteroMF
    • Data Input: Input DTable of user-item rating matrix data.
    • Model Output: Matrix Factorization model.
    4. Hetero SVD

    Build hetero SVD module through multiple parties.

    • Corresponding module name: HeteroSVD
    • Data Input: Input DTable of user-item rating matrix data.
    • Model Output: Hetero SVD model.
    5. Hetero SVD++

    Build hetero SVD++ module through multiple parties.

    • Corresponding module name: HeteroSVDPP
    • Data Input: Input DTable of user-item rating matrix data.
    • Model Output: Hetero SVD++ model.
    6. Hetero GMF

    Build hetero GMF module through multiple parties.

    • Corresponding module name: HeteroGMF
    • Data Input: Input DTable of user-item rating matrix data(using positive data only).
    • Model Output: Hetero GMF model.

    More available algorithms are coming soon.

    转自https://github.com/FederatedAI/FATE

  • 相关阅读:
    jquery处理鼠标左中右键事件
    bootstrap弹出框
    移动端去掉a标签点击时出现的背景
    sessionStorage
    页面滑动到最下面,执行代码
    判断页面时向上滚动还是向下滚动
    sql 时间查询 /sql中判断更新或者插入/查询一年所有双休日
    求取最大值
    Repeater 获取数据值
    加载完毕后执行计算
  • 原文地址:https://www.cnblogs.com/lhwblogs/p/14729564.html
Copyright © 2011-2022 走看看