zoukankan      html  css  js  c++  java
  • PCL关键点(1)

    关键点也称为兴趣点,它是2D图像或是3D点云或者曲面模型上,可以通过定义检测标准来获取的具有稳定性,区别性的点集,从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术

     NARF(Normal Aligned Radial Feature)关键点是为了从深度图像中识别物体而提出的,对NARF关键点的提取过程有以下要求:

          a) 提取的过程考虑边缘以及物体表面变化信息在内;

          b)在不同视角关键点可以被重复探测;

          c)关键点所在位置有足够的支持区域,可以计算描述子和进行唯一的估计法向量。

          其对应的探测步骤如下

          (1) 遍历每个深度图像点,通过寻找在近邻区域有深度变化的位置进行边缘检测。

          (2) 遍历每个深度图像点,根据近邻区域的表面变化决定一测度表面变化的系数,及变化的主方向。

          (3) 根据step(2)找到的主方向计算兴趣点,表征该方向和其他方向的不同,以及该处表面的变化情况,即该点有多稳定。

          (4) 对兴趣值进行平滑滤波。

          (5) 进行无最大值压缩找到的最终关键点,即为NARF关键点。

     关于NARF的更为具体的描述请查看这篇博客www.cnblogs.com/ironstark/p/5051533.html。

    PCL中keypoints模块及类的介绍

    (1)class pcl::Keypoint<PointInT,PointOutT>  类keypoint是所有关键点检测相关类的基类,定义基本接口,具体实现由子类来完成,其继承关系时下图:

             

    具体介绍:

    Public Member Functions

    virtual void  setSearchSurface (const PointCloudInConstPtr &cloud)
      设置搜索时所用搜索点云,cloud为指向点云对象的指针引用
    void  setSearchMethod (const KdTreePtr &tree)  设置内部算法实现时所用的搜索对象,tree为指向kdtree或者octree对应的指针
    void  setKSearch (int k)   设置K近邻搜索时所用的K参数
    void  setRadiusSearch (double radius)   设置半径搜索的半径的参数
    int  searchForNeighbors (int index, double parameter, std::vector< int > &indices, std::vector< float > &distances) const
     

    采用setSearchMethod设置搜索对象,以及setSearchSurface设置搜索点云,进行近邻搜索,返回近邻在点云中的索引向量,

    indices以及对应的距离向量distance其中为查询点的索引,parameter为搜索时所用的参数半径或者K

    (2)class  pcl::HarrisKeypoint2D<PointInT,PointOutT,IntensityT>

         类HarrisKeypoint2D实现基于点云的强度字段的harris关键点检测子,其中包括多种不同的harris关键点检测算法的变种,其关键函数的说明如下:

    Public Member Functions

      HarrisKeypoint2D (ResponseMethod method=HARRIS, int window_width=3, int window_height=3, int min_distance=5, float threshold=0.0)
      重构函数,method需要设置采样哪种关键点检测方法,有HARRIS,NOBLE,LOWE,WOMASI四种方法,默认为HARRIS,window_width  window_height为检测窗口的宽度和高度min_distance 为两个关键点之间 容许的最小距离,threshold为判断是否为关键点的感兴趣程度的阀值,小于该阀值的点忽略,大于则认为是关键点
     
    void  setMethod (ResponseMethod type)设置检测方式
    void  setWindowWidth (int window_width)  设置检测窗口的宽度
    void  setWindowHeight (int window_height)  设置检测窗口的高度
    void  setSkippedPixels (int skipped_pixels)  设置在检测时每次跳过的像素的数目
    void  setMinimalDistance (int min_distance)   设置候选关键点之间的最小距离
    void  setThreshold (float threshold)  设置感兴趣的阀值
    void  setNonMaxSupression (bool=false)  设置是否对小于感兴趣阀值的点进行剔除,如果是true则剔除,否则返回这个点
    void  setRefine (bool do_refine)设置是否对所得的关键点结果进行优化,
    void  setNumberOfThreads (unsigned int nr_threads=0)  设置该算法如果采用openMP并行机制,能够创建线程数目

    (3)pcl::HarrisKeypoint3D< PointInT, PointOutT, NormalT >

         类HarrisKeypoint3D和HarrisKeypoint2D类似,但是没有在点云的强度空间检测关键点,而是利用点云的3D空间的信息表面法线向量来进行关键点检测,关于HarrisKeypoint3D的类与HarrisKeypoint2D相似,除了

    HarrisKeypoint3D (ResponseMethod method=HARRIS, float radius=0.01f, float threshold=0.0f) 

    重构函数,method需要设置采样哪种关键点检测方法,有HARRIS,NOBLE,LOWE,WOMASI四种方法,默认为HARRIS,radius为法线估计的搜索半径threshold为判断是否为关键点的感兴趣程度的阀值,小于该阀值的点忽略,大于则认为是关键点。

    (4)pcl::HarrisKeypoint6D< PointInT, PointOutT, NormalT >

        类HarrisKeypoint6D和HarrisKeypoint2D类似,只是利用了欧式空间域XYZ或者强度域来候选关键点,或者前两者的交集,即同时满足XYZ域和强度域的关键点为候选关键点,

    HarrisKeypoint6D (float radius=0.01, float threshold=0.0)  重构函数,此处并没有方法选择的参数,而是默认采用了Tomsai提出的方法实现关键点的检测,radius为法线估计的搜索半径threshold为判断是否为关键点的感兴趣程度的阀值,小于该阀值的点忽略,大于则认为是关键点。

    (5)pcl::SIFTKeypoint< PointInT, PointOutT >

        类SIFTKeypoint是将二维图像中的SIFT算子调整后移植到3D空间的SIFT算子的实现,输入带有XYZ坐标值和强度的点云,输出为点云中的SIFT关键点,其关键函数的说明如下:

    void  setScales (float min_scale, int nr_octaves, int nr_scales_per_octave)
      设置搜索时与尺度相关的参数,min_scale在点云体素尺度空间中标准偏差,点云对应的体素栅格中的最小尺寸
    int nr_octaves是检测关键点时体素空间尺度的数目,nr_scales_per_octave为在每一个体素空间尺度下计算高斯空间的尺度所需要的参数
    void  setMinimumContrast (float min_contrast)   设置候选关键点对应的对比度下限

    (6)还有很多不再一一介绍

     实例分析

    实验实现提取NARF关键点,并且用图像和3D显示的方式进行可视化,可以直观的观察关键点的位置和数量 narf_feature_extraction.cpp:

    #include <iostream>
    
    #include <boost/thread/thread.hpp>
    #include <pcl/range_image/range_image.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/visualization/range_image_visualizer.h>
    #include <pcl/visualization/pcl_visualizer.h>
    #include <pcl/features/range_image_border_extractor.h>
    #include <pcl/keypoints/narf_keypoint.h>
    #include <pcl/features/narf_descriptor.h>
    #include <pcl/console/parse.h>
    
    typedef pcl::PointXYZ PointType;
    
    // --------------------
    // -----Parameters-----
    // --------------------
    float angular_resolution = 0.5f;           ////angular_resolution为模拟的深度传感器的角度分辨率,即深度图像中一个像素对应的角度大小
    float support_size = 0.2f;                 //点云大小的设置
    pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;     //设置坐标系
    bool setUnseenToMaxRange = false;
    bool rotation_invariant = true;
    
    // --------------
    // -----Help-----
    // --------------
    void 
    printUsage (const char* progName)
    {
      std::cout << "
    
    Usage: "<<progName<<" [options] <scene.pcd>
    
    "
                << "Options:
    "
                << "-------------------------------------------
    "
                << "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")
    "
                << "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")
    "
                << "-m           Treat all unseen points to max range
    "
                << "-s <float>   support size for the interest points (diameter of the used sphere - "
                                                                      "default "<<support_size<<")
    "
                << "-o <0/1>     switch rotational invariant version of the feature on/off"
                <<               " (default "<< (int)rotation_invariant<<")
    "
                << "-h           this help
    "
                << "
    
    ";
    }
    
    void 
    setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)  //设置视口的位姿
    {
      Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f (0, 0, 0);   //视口的原点pos_vector
      Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f (0, 0, 1) + pos_vector;  //旋转+平移look_at_vector
      Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f (0, -1, 0);   //up_vector
      viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],      //设置照相机的位姿
                                look_at_vector[0], look_at_vector[1], look_at_vector[2],
                                up_vector[0], up_vector[1], up_vector[2]);
    }
    
    // --------------
    // -----Main-----
    // --------------
    int 
    main (int argc, char** argv)
    {
      // --------------------------------------
      // -----Parse Command Line Arguments-----
      // --------------------------------------
      if (pcl::console::find_argument (argc, argv, "-h") >= 0)
      {
        printUsage (argv[0]);
        return 0;
      }
      if (pcl::console::find_argument (argc, argv, "-m") >= 0)
      {
        setUnseenToMaxRange = true;
        cout << "Setting unseen values in range image to maximum range readings.
    ";
      }
      if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)
        cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".
    ";
      int tmp_coordinate_frame;
      if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
      {
        coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
        cout << "Using coordinate frame "<< (int)coordinate_frame<<".
    ";
      }
      if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)
        cout << "Setting support size to "<<support_size<<".
    ";
      if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
        cout << "Setting angular resolution to "<<angular_resolution<<"deg.
    ";
      angular_resolution = pcl::deg2rad (angular_resolution);
      
      // ------------------------------------------------------------------
      // -----Read pcd file or create example point cloud if not given-----
      // ------------------------------------------------------------------
      pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
      pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
      pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
      Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
      std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
      if (!pcd_filename_indices.empty ())
      {
        std::string filename = argv[pcd_filename_indices[0]];
        if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
        {
          cerr << "Was not able to open file ""<<filename<<"".
    ";
          printUsage (argv[0]);
          return 0;
        }
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0], //场景传感器的位置
                                                                   point_cloud.sensor_origin_[1],
                                                                   point_cloud.sensor_origin_[2])) *
                            Eigen::Affine3f (point_cloud.sensor_orientation_);
        std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
        if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
          std::cout << "Far ranges file ""<<far_ranges_filename<<"" does not exists.
    ";
      }
      else
      {
        setUnseenToMaxRange = true;
        cout << "
    No *.pcd file given => Genarating example point cloud.
    
    ";
        for (float x=-0.5f; x<=0.5f; x+=0.01f)
        {
          for (float y=-0.5f; y<=0.5f; y+=0.01f)
          {
            PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
            point_cloud.points.push_back (point);
          }
        }
        point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
      }
      
      // -----------------------------------------------
      // -----Create RangeImage from the PointCloud-----
      // -----------------------------------------------
      float noise_level = 0.0;
      float min_range = 0.0f;
      int border_size = 1;
      boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
      pcl::RangeImage& range_image = *range_image_ptr;   
      range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                       scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
      range_image.integrateFarRanges (far_ranges);
      if (setUnseenToMaxRange)
        range_image.setUnseenToMaxRange ();
      
      // --------------------------------------------
      // -----Open 3D viewer and add point cloud-----
      // --------------------------------------------
      pcl::visualization::PCLVisualizer viewer ("3D Viewer");
      viewer.setBackgroundColor (1, 1, 1);
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
      viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
      //viewer.addCoordinateSystem (1.0f, "global");
      //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
      //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
      viewer.initCameraParameters ();
      setViewerPose (viewer, range_image.getTransformationToWorldSystem ());
      
      // --------------------------
      // -----Show range image-----
      // --------------------------
      pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
      range_image_widget.showRangeImage (range_image);
      /*********************************************************************************************************
       创建RangeImageBorderExtractor对象,它是用来进行边缘提取的,因为NARF的第一步就是需要探测出深度图像的边缘,
       
       *********************************************************************************************************/
      // --------------------------------
      // -----Extract NARF keypoints-----
      // --------------------------------
      pcl::RangeImageBorderExtractor range_image_border_extractor;   //用来提取边缘
      pcl::NarfKeypoint narf_keypoint_detector;      //用来检测关键点
      narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);   //
      narf_keypoint_detector.setRangeImage (&range_image);
      narf_keypoint_detector.getParameters ().support_size = support_size;    //设置NARF的参数
      
      pcl::PointCloud<int> keypoint_indices;
      narf_keypoint_detector.compute (keypoint_indices);
      std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.
    ";
    
      // ----------------------------------------------
      // -----Show keypoints in range image widget-----
      // ----------------------------------------------
      //for (size_t i=0; i<keypoint_indices.points.size (); ++i)
        //range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,
                                      //keypoint_indices.points[i]/range_image.width);
      
      // -------------------------------------
      // -----Show keypoints in 3D viewer-----
      // -------------------------------------
      pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);
    
      pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;
    
      keypoints.points.resize (keypoint_indices.points.size ());
      for (size_t i=0; i<keypoint_indices.points.size (); ++i)
    
        keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
      viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");
      
      // ------------------------------------------------------
      // -----Extract NARF descriptors for interest points-----
      // ------------------------------------------------------
      std::vector<int> keypoint_indices2;
      keypoint_indices2.resize (keypoint_indices.points.size ());
      for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
        keypoint_indices2[i]=keypoint_indices.points[i];
      pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);
      narf_descriptor.getParameters ().support_size = support_size;
      narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;
      pcl::PointCloud<pcl::Narf36> narf_descriptors;
      narf_descriptor.compute (narf_descriptors);
      cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "
                          <<keypoint_indices.points.size ()<< " keypoints.
    ";
      
      //--------------------
      // -----Main loop-----
      //--------------------
      while (!viewer.wasStopped ())
      {
        range_image_widget.spinOnce ();  // process GUI events
        viewer.spinOnce ();
        pcl_sleep(0.01);
      }
    }

    运行结果:

     

    未完待续**********************88888

    有兴趣这可以扫描下面的二维码关注公众号与我交流,

     

  • 相关阅读:
    微软发布3款SQL Injection(SQL 注入)攻击检测工具
    TortoiseSVN 使用介绍
    windows下的Bug跟踪管理软件Bugfree的安装
    国内PHP开源建站程序一览
    55个经典开源Windows工具
    JavaScript代码格式化工具(JS代码分析必备)
    Javascript工具 使用packer来压缩JS文件
    开源UML设计工具StarUML
    看似简单的问题其实不简单
    Javascript工具 使用JSDoc建立JavaScript代码的文档
  • 原文地址:https://www.cnblogs.com/li-yao7758258/p/6476359.html
Copyright © 2011-2022 走看看