Triangular DGM
1. Basis functions
decomposing the domain (Omega) into (N_e) conforming
non-overlapping triangular elements (Omega_e).
[egin{equation}
Omega = igcup_{e = 1}^{N_e} Omega_e
end{equation}]
nonsingular mapping (x = Psi(mathbf{xi})) which defines a transformation from the physical Cartesian coordinate system to the local reference coordinate system defined on the reference triangle.
local elementwise solution (mathbf{q}) by an N th order polynomial in (mathbf{xi}) as
[egin{equation}
mathbf{q}_N (mathbf{xi}) = sum_{i = 1}^{M_N} psi_i (mathbf{xi}) mathbf{q}_N (mathbf{xi}_i)
end{equation}]
where (mathbf{xi}_i) represents (M = frac{1}{2} ( N + 1)( N + 2)) interpolation points and (psi_i (mathbf{xi})) are the associatedmultivariate Lagrange polynomials.
an explicit formula for the Lagrange basis —— reference to an easily constructed orthonormal PKD polynomial basis and the generalized Vandermonde matrix.
通过正交多项式和Vandermonde构造参考单元上Lagrange基函数。
2. Integration
2.1. Area integrals
(int_{Omega_e} f(x) g(x) dx = sum_{i = 1}^{M_C} omega_i^e left| J^e(mathbf{xi}_i)
ight| f(mathbf{xi}_i) g(mathbf{xi}_i))
where (M_C) is a function of (C) which represents the order of the cubature approximation.
2.2. Boundary integrals
(int_{Gamma_e} f(x) g(x) dx = sum_{i = 0}^{Q} omega_i^s left| J^s(mathbf{xi}_i)
ight| f(mathbf{xi}_i) g(mathbf{xi}_i))
where (Q) represents the order of the quadrature approximation. Using the Gauss quadrature, we
can use (Q = N) to achieve order (2N) accuracy.
3. Tangent and normal vectors of the element edges
4. Semi-discrete equations
5.1. Elimination of the mass matrix
将方程左乘质量矩阵的逆并除以雅克比系数,可得
[egin{equation}
frac{partial mathbf{q}^e_i}{partial t} + left( hat{D}_{ij}^{xi} xi_x^e + hat{D}_{ij}^{eta} eta_x^e
ight) mathbf{f}_j^e + left( hat{D}_{ij}^{xi} xi_y^e + hat{D}_{ij}^{eta} eta_y^e
ight) mathbf{g}_j^e - S_i^e = frac{left| J^s
ight|}{left| J^e
ight|} hat{M}_{ij}^s left[ n_x^s left( mathbf{f}^e - mathbf{f}^*
ight)_j + n_y^s left( mathbf{g}^e - mathbf{g}^*
ight)_j
ight]
end{equation}]
where the matrices are defined as
[egin{equation}
egin{array}{lll}
hat{D}_{ij}^{xi} = M_{ik}^{-1} D_{kj}^{xi}, & hat{D}_{ij}^{eta} = M_{ik}^{-1} D_{kj}^{eta}, &
hat{M}_{ij}^{s} = M_{ik}^{-1} M_{kj}^{xi},
end{array}
end{equation}]
where
[egin{equation}
egin{array}{ll}
M_{ij} = sum_{k = 1}^{M_C} omega_k psi_{ik} phi_{jk}, & M_{ij}^s = sum_{k = 1}^{M_Q} omega_k psi_{ik} phi_{jk} cr
D_{ij}^{xi} = sum_{k = 1}^{M_C} omega_k psi_{ik} frac{partial phi_{jk}}{partial xi}, & D_{ij}^{eta} = sum_{k = 1}^{M_C} omega_k psi_{ik} frac{partial phi_{jk}}{partial eta}
end{array}
end{equation}]
(M_C) and (M_Q) denote the number of cubature (two dimensional) and quadrature (one dimensional) integration points required to achieve order 2N accuracy, and (psi_{ik}) represents the function (psi) at the (i=1, cdots,M_N) interpolation points evaluated at the integration point k.
Since the mass matrix is constant (i.e. not a function of x) then, using Equations above, we can move the mass matrix inside the summations which are the discrete representations of the continuous integrals. This then gives
[egin{equation}
egin{array}{ll}
hat{M}_{ij}^{s} = sum_{k = 1}^{M_Q} omega_k hat{psi}_{ik} psi_{jk}, & hat{D}_{ij}^{xi} = sum_{k = 1}^{M_C} omega_k hat{psi}_{ik} frac{partial psi_{jk}}{partial xi}, & hat{D}_{ij}^{eta} = sum_{k = 1}^{M_C} omega_k hat{psi}_{ik} frac{partial psi_{jk}}{partial eta}
end{array}
end{equation}]
where
[egin{equation}
hat{psi}_i = M_{ik}^{-1} psi_k
end{equation}]
根据
(D_{ij}^{xi} = sum_{k = 1}^{M_C} omega_k psi_{ik} frac{partial psi_{jk}}{partial xi})
我们可以将 (D_{ij}^{xi}) 写为如下矩阵相乘形式
[egin{equation}
D_{ij}^{xi} = egin{bmatrix}
omega_1 psi_{11}, omega_2 psi_{12}, cdots, omega_{M_C} psi_{1{M_C}}
end{bmatrix}
egin{bmatrix}
frac{partial psi_{11}}{partial xi} cr frac{partial psi_{12}}{partial xi} cr
cdots cr
frac{partial psi_{1{M_C}}}{partial xi}
end{bmatrix}
end{equation}]
因此
[D^{xi} = egin{bmatrix}
omega_1 psi_{11}, omega_2 psi_{12}, cdots, omega_{M_C} psi_{1{M_C}} cr
omega_1 psi_{21}, omega_2 psi_{22}, cdots, omega_{M_C} psi_{2{M_C}} cr
cdots cr
omega_1 psi_{{M_C}1}, omega_2 psi_{{M_C}2}, cdots, omega_{M_C} psi_{{M_C}{M_C}} cr
end{bmatrix}
egin{bmatrix}
frac{partial psi_{11}}{partial xi}, & frac{partial psi_{21}}{partial xi}, & cdots & frac{partial psi_{{M_C}1}}{partial xi} cr frac{partial psi_{12}}{partial xi}, & frac{partial psi_{22}}{partial xi}, & cdots & frac{partial psi_{{M_C}2}}{partial xi} cr
cdots cr
frac{partial psi_{1{M_C}}}{partial xi}, & frac{partial psi_{2{M_C}}}{partial xi}, & cdots & frac{partial psi_{{M_C}{M_C}}}{partial xi}
end{bmatrix}]
因此
[hat{D}^{xi} = M^{-1} egin{bmatrix}
omega_1 psi_{11}, omega_2 psi_{12}, cdots, omega_{M_C} psi_{1{M_C}} cr
omega_1 psi_{21}, omega_2 psi_{22}, cdots, omega_{M_C} psi_{2{M_C}} cr
cdots cr
omega_1 psi_{{M_C}1}, omega_2 psi_{{M_C}2}, cdots, omega_{M_C} psi_{{M_C}{M_C}} cr
end{bmatrix}
egin{bmatrix}
frac{partial psi_{11}}{partial xi}, & frac{partial psi_{21}}{partial xi}, & cdots & frac{partial psi_{{M_C}1}}{partial xi} cr frac{partial psi_{12}}{partial xi}, & frac{partial psi_{22}}{partial xi}, & cdots & frac{partial psi_{{M_C}2}}{partial xi} cr
cdots cr
frac{partial psi_{1{M_C}}}{partial xi}, & frac{partial psi_{2{M_C}}}{partial xi}, & cdots & frac{partial psi_{{M_C}{M_C}}}{partial xi}
end{bmatrix}]
Reference:
[1]: GIRALDO F X, WARBURTON T. A high-order triangular discontinuous Galerkin oceanic shallow water model[J]. International Journal for Numerical Methods in Fluids, 2008, 56: 899–925.