zoukankan      html  css  js  c++  java
  • 体积与边精确积分DGM方法

    Triangular DGM

    1. Basis functions

    decomposing the domain (Omega) into (N_e) conforming
    non-overlapping triangular elements (Omega_e).

    [egin{equation} Omega = igcup_{e = 1}^{N_e} Omega_e end{equation}]

    nonsingular mapping (x = Psi(mathbf{xi})) which defines a transformation from the physical Cartesian coordinate system to the local reference coordinate system defined on the reference triangle.

    local elementwise solution (mathbf{q}) by an N th order polynomial in (mathbf{xi}) as

    [egin{equation} mathbf{q}_N (mathbf{xi}) = sum_{i = 1}^{M_N} psi_i (mathbf{xi}) mathbf{q}_N (mathbf{xi}_i) end{equation}]

    where (mathbf{xi}_i) represents (M = frac{1}{2} ( N + 1)( N + 2)) interpolation points and (psi_i (mathbf{xi})) are the associatedmultivariate Lagrange polynomials.

    an explicit formula for the Lagrange basis —— reference to an easily constructed orthonormal PKD polynomial basis and the generalized Vandermonde matrix.

    通过正交多项式和Vandermonde构造参考单元上Lagrange基函数。

    2. Integration

    2.1. Area integrals

    (int_{Omega_e} f(x) g(x) dx = sum_{i = 1}^{M_C} omega_i^e left| J^e(mathbf{xi}_i) ight| f(mathbf{xi}_i) g(mathbf{xi}_i))

    where (M_C) is a function of (C) which represents the order of the cubature approximation.

    2.2. Boundary integrals

    (int_{Gamma_e} f(x) g(x) dx = sum_{i = 0}^{Q} omega_i^s left| J^s(mathbf{xi}_i) ight| f(mathbf{xi}_i) g(mathbf{xi}_i))

    where (Q) represents the order of the quadrature approximation. Using the Gauss quadrature, we
    can use (Q = N) to achieve order (2N) accuracy.

    3. Tangent and normal vectors of the element edges

    4. Semi-discrete equations

    5. Matrix form of the semi-discrete equations

    5.1. Elimination of the mass matrix

    将方程左乘质量矩阵的逆并除以雅克比系数,可得

    [egin{equation} frac{partial mathbf{q}^e_i}{partial t} + left( hat{D}_{ij}^{xi} xi_x^e + hat{D}_{ij}^{eta} eta_x^e ight) mathbf{f}_j^e + left( hat{D}_{ij}^{xi} xi_y^e + hat{D}_{ij}^{eta} eta_y^e ight) mathbf{g}_j^e - S_i^e = frac{left| J^s ight|}{left| J^e ight|} hat{M}_{ij}^s left[ n_x^s left( mathbf{f}^e - mathbf{f}^* ight)_j + n_y^s left( mathbf{g}^e - mathbf{g}^* ight)_j ight] end{equation}]

    where the matrices are defined as

    [egin{equation} egin{array}{lll} hat{D}_{ij}^{xi} = M_{ik}^{-1} D_{kj}^{xi}, & hat{D}_{ij}^{eta} = M_{ik}^{-1} D_{kj}^{eta}, & hat{M}_{ij}^{s} = M_{ik}^{-1} M_{kj}^{xi}, end{array} end{equation}]

    where

    [egin{equation} egin{array}{ll} M_{ij} = sum_{k = 1}^{M_C} omega_k psi_{ik} phi_{jk}, & M_{ij}^s = sum_{k = 1}^{M_Q} omega_k psi_{ik} phi_{jk} cr D_{ij}^{xi} = sum_{k = 1}^{M_C} omega_k psi_{ik} frac{partial phi_{jk}}{partial xi}, & D_{ij}^{eta} = sum_{k = 1}^{M_C} omega_k psi_{ik} frac{partial phi_{jk}}{partial eta} end{array} end{equation}]

    (M_C) and (M_Q) denote the number of cubature (two dimensional) and quadrature (one dimensional) integration points required to achieve order 2N accuracy, and (psi_{ik}) represents the function (psi) at the (i=1, cdots,M_N) interpolation points evaluated at the integration point k.

    Since the mass matrix is constant (i.e. not a function of x) then, using Equations above, we can move the mass matrix inside the summations which are the discrete representations of the continuous integrals. This then gives

    [egin{equation} egin{array}{ll} hat{M}_{ij}^{s} = sum_{k = 1}^{M_Q} omega_k hat{psi}_{ik} psi_{jk}, & hat{D}_{ij}^{xi} = sum_{k = 1}^{M_C} omega_k hat{psi}_{ik} frac{partial psi_{jk}}{partial xi}, & hat{D}_{ij}^{eta} = sum_{k = 1}^{M_C} omega_k hat{psi}_{ik} frac{partial psi_{jk}}{partial eta} end{array} end{equation}]

    where

    [egin{equation} hat{psi}_i = M_{ik}^{-1} psi_k end{equation}]


    根据

    (D_{ij}^{xi} = sum_{k = 1}^{M_C} omega_k psi_{ik} frac{partial psi_{jk}}{partial xi})

    我们可以将 (D_{ij}^{xi}) 写为如下矩阵相乘形式

    [egin{equation} D_{ij}^{xi} = egin{bmatrix} omega_1 psi_{11}, omega_2 psi_{12}, cdots, omega_{M_C} psi_{1{M_C}} end{bmatrix} egin{bmatrix} frac{partial psi_{11}}{partial xi} cr frac{partial psi_{12}}{partial xi} cr cdots cr frac{partial psi_{1{M_C}}}{partial xi} end{bmatrix} end{equation}]

    因此

    [D^{xi} = egin{bmatrix} omega_1 psi_{11}, omega_2 psi_{12}, cdots, omega_{M_C} psi_{1{M_C}} cr omega_1 psi_{21}, omega_2 psi_{22}, cdots, omega_{M_C} psi_{2{M_C}} cr cdots cr omega_1 psi_{{M_C}1}, omega_2 psi_{{M_C}2}, cdots, omega_{M_C} psi_{{M_C}{M_C}} cr end{bmatrix} egin{bmatrix} frac{partial psi_{11}}{partial xi}, & frac{partial psi_{21}}{partial xi}, & cdots & frac{partial psi_{{M_C}1}}{partial xi} cr frac{partial psi_{12}}{partial xi}, & frac{partial psi_{22}}{partial xi}, & cdots & frac{partial psi_{{M_C}2}}{partial xi} cr cdots cr frac{partial psi_{1{M_C}}}{partial xi}, & frac{partial psi_{2{M_C}}}{partial xi}, & cdots & frac{partial psi_{{M_C}{M_C}}}{partial xi} end{bmatrix}]

    因此

    [hat{D}^{xi} = M^{-1} egin{bmatrix} omega_1 psi_{11}, omega_2 psi_{12}, cdots, omega_{M_C} psi_{1{M_C}} cr omega_1 psi_{21}, omega_2 psi_{22}, cdots, omega_{M_C} psi_{2{M_C}} cr cdots cr omega_1 psi_{{M_C}1}, omega_2 psi_{{M_C}2}, cdots, omega_{M_C} psi_{{M_C}{M_C}} cr end{bmatrix} egin{bmatrix} frac{partial psi_{11}}{partial xi}, & frac{partial psi_{21}}{partial xi}, & cdots & frac{partial psi_{{M_C}1}}{partial xi} cr frac{partial psi_{12}}{partial xi}, & frac{partial psi_{22}}{partial xi}, & cdots & frac{partial psi_{{M_C}2}}{partial xi} cr cdots cr frac{partial psi_{1{M_C}}}{partial xi}, & frac{partial psi_{2{M_C}}}{partial xi}, & cdots & frac{partial psi_{{M_C}{M_C}}}{partial xi} end{bmatrix}]


    Reference:

    [1]: GIRALDO F X, WARBURTON T. A high-order triangular discontinuous Galerkin oceanic shallow water model[J]. International Journal for Numerical Methods in Fluids, 2008, 56: 899–925.

  • 相关阅读:
    无法启动调试--未安装 Silverlight Developer 运行时。请安装一个匹配版本。
    jQuery导航菜单防刷新
    IE6下Png透明最佳解决方案(推荐) Unit PNG Fix
    每周进步要点(第50周12.4-12.11)
    学习笔记:重塑你的自我驱动力
    学习笔记之是什么决定我们的命运
    读书《万万没想到 3》
    人与人之间的鄙视链是如何形成的?
    第7本《万万没想到-用理工科思维理解世界2》
    中明写公众号的时候他在想什么
  • 原文地址:https://www.cnblogs.com/li12242/p/5463221.html
Copyright © 2011-2022 走看看